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1 Individual Project’s contribution to the CRP

1.1 Aims and Objectives

Graphs have great importance in modeling networks and discrete structures (which themselves
may be models for physical or social phenomena), see the project aims in T5. Real world net-
works, however, often are quite large (e.g., the “internet” to cite the most prominent example).
Visualization and analysis of such graphs is a challenging task.

There exists a strong evidence ([6]) that product graphs can be a valuable tool for this
purpose. Roughly spoken, given a graph G, the aim is to provide several smaller graphs and a
rule for the construction of a graph H that is either isomorphic with G or that approximates
G, i.e., that is “near” to G. Thus it is possible to describe the geometry of such structures
by smaller and often also simpler graphs. A typical example would be the representation of G
by the Cartesian product H of several small graphs, with the additional information that G is
obtained from H by deletion and/or insertion of several specified edges; see PI Pisanski [7].

This decomposition may, e.g., be essential for graph drawing (see T5) for finding a good
presentation of the entire structure, of parts or substructures, or superstructures. In molecular
biology this information may be used to gain more insight in the mechanisms of evolution. It can
help to detect hierarchies in social networks. It is the aim of this project to provide algorithms
that yield the desired structural information.

Clearly this includes the recognition of graph products and similar structures. The recogni-
tion of graph products is well advanced, see the forthcoming book by AP Imrich, PI Klavžar,
and Richard Hammack [5]. It contains polynomial algorithms for the recognition of many types
of products of graphs. Some of the algorithms are very fast. For example, Cartesian products
can be recognized in linear time. For other products there exist quasilinear algorithms for some
applications that are important for T5 [3], whereas the recognition of strong and direct products
is still polynomial of high complexity.

For directed graphs, hypergraphs and similar structures the situation pertaining to their
algorithmic recognition is still wide open, despite some early steps, see AP Imrich & PI Stadler
[4]. Hence research in the area of fast algorithms for the decomposition of structures with respect
to various products is still an objective and will partially be driven by the needs of applications
in T5.

If a graph is not a product, but reasonably close to it (small edit distance), it is often
called approximate. Recently, algorithms that recognize approximate strong products have
been proposed, see [3]. For other products – in particular for the Cartesian and direct product
– the field is wide open and there is good chance that the same idea will work equally well. This
would enhance the visualization of small graphs (see [7]) as and help for some tasks in T5.

If one has reason to assume that a graph originally had a product structure, but that its rep-
resentation was significantly disturbed or incomplete (e.g., by some applications in T5) different
methods are needed. One might think of imposing a product structure on the given graph, be
it for visualization or for the recognition of hidden structural properties. Graphs that we will
represent in such a way will still be called near products, however. In such cases the type of
product may also be unclear originally and may have to be chosen by a reasonable selection
process. Once the type as been determined, a representation algorithm will be needed. For
this purpose global properties can be used. This includes convexity, numbers of shortest paths
between pairs of vertices, diameter, and densities, which were not used for the recognition of
products and approximate graph products as described above.

The aim of T2 is the provision of one or more product structures to a given graph that
capture essential features. Moreover, we also provide methods that measure of the quality of



the fit of a particular product structure to the given graph. It is intended to implement these
algorithms using C/C++ and the boost library (http://www.boost.org/) and make them thus
available for partner of the CRP as well as to other interested research groups. (Many special
purpose computing environments have an interface to load functions written in C/C++.)

1.2 Methodologies

The research will be conducted in close relation to PI Bıyıgoğlu and in particular with AP Imrich
from Leoben. He is a renowned specialist in the first two of the methods described below and
well versed in the remaining ones. So there is essential overlap with the proposal of AP Imrich.

Exact methods. Implementation and development of algorithms for the recognition of prod-
ucts of graphs. Algorithms for the Cartesian, the strong and the direct product of graphs are
collected in the forthcoming book [5]. Some proof of concept implementation (of parts) of the
algorithms exist. But they are not complete and need a unified treatment for an implementation
using the boost library (or any other computational environment).

Algorithms for several new classes of graphs or new types of products may have to be designed
upon request from Part T5. This may be routine or very difficult, even if standard methods are
applicable, see, e.g., [2].

Approximate methods. Satisfactory algorithms for approximate strong products have al-
ready been developed [3] and implemented for the boost library. It is based on the fact that
neighborhoods are subproducts. We expect that it also works for the direct product. For the
Cartesian product nothing of the kind exists. We plan to apply a similar approach based on
intervals instead of neighborhoods. This looks very promising, but will involve many computa-
tional details.

Heuristic methods. For the recognition of near products entirely new methods are needed.
We expect to be able to use the fact that layers with respect to the Cartesian product are convex
and that vertices in one and the same layer are have minimal numbers of paths between them,
for an intelligent guess on how to decompose the given graph. For the strong product similar
methods may work, but here the problem is more complex.

Spectral methods. Eigenvalues and vectors of adjacency and Laplacian matrices have
been used successfully in heuristics for various problems like graph partitioning, coloring, clus-
tering, graph drawing, and others, see, e.g., Bıyıkoğlu et al. [1]. Spectral plots can also help
to detect local symmetric structures in (large) graphs. It is also known that factors of certain
Cartesian products can be determined by the first eigenvectors of its Laplacian matrix. Thus
we want to investigate the feasibility of spectral methods for finding approximate products.

Statistical methods. In order to make an intelligent guess which product to use we plan
to rely on statistical methods. We wish to use the degree distribution, betweenness, diameter
and other properties for the selection, see Leskovec et al. [6]. Thus we will make use of advanced
statistical methods for which we can use additional expertise that is available at the Institute
for Statistics and Mathematics.

Model fitting and quality control. We need methods to estimate the parameters for
a particular product structure as well as methods that measures the fit of this model for a
given graph. Again statistical methods will be needed. Here we may also may use entropy
considerations to choose between different representations.
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