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1 Individual Project’s contribution to the CRP

1.1 Aims and Objectives

Our project is aimed at the interplay between algebraic, combinatorial, and geometric structures
on graphs with focus on the relationships between graph embeddings, maps, and their symme-
tries on the one hand, and colourings, nowhere-zero flows, and geometrical configurations on the
other hand.

Graph embeddings and immersions The concept of a graph embedding is central to our
research. A 2-cell embedding of a graph G in a closed surface S is a homeomorphism G ↪→ S
such that each component of S−G is an open 2-cell. An immersion of a graph allows the images
of two edges to intersect in some internal points, usually subject to certain natural restrictions.
Although the study of graph embeddings and immersions forms the proper core of topological
graph theory, motivations come from various areas of mathematics, physics, chemistry, and
even computer science. Within the present project we will examine various aspects of graph
embeddings – their structure, symmetries, extremal properties, various invariants, and others.

In topological graph theory, there are only a very few problems for which deterministic
polynomial-time algorithms have been found. One of such problems is that of computation the
maximum genus of a graph [21]. However, the latter result only presents a reduction of the
problem to the matroid parity problem. It is one of our goals within this IP to design a new,
direct, and simpler, algorithm for determining this invariant and to generalize it to embeddings of
signed graphs. We also plan to explore embeddings that are close to maximum genus embeddings
and retain certain features common with them.

While the classical approach to graph embeddings in surfaces requires the edges of the em-
bedded graph not to intersect in their internal points, both practical applications and theoretical
considerations lead to the study of immersions of graphs where internal intersections of edges
are allowed. Particularly important is the case where the underlying surface is the plane and
the number of edge intersections is minimal. This minimal number, called the crossing number
of a graph, has received a significant attention in the literature, see [57, 58]. Crossing numbers
of graphs are hard to compute: the precise numbers are known only for a few families of graphs.
In our project we will investigate crossing numbers of several interesting families of graphs that
may have a application in computer science and VLSI design.

Highly symmetric maps The theory of maps on surfaces focuses on two main aspects:
symmetry and structure. Substantial results in both directions have led to deep implications
to other branches of mathematics, such as hyperbolic geometry, group theory and theory of
Riemann surfaces. An excellent survey of the connections was given by Jones and Singerman
[35]. In this part of the Proposal we focus on symmetry, with particular emphasis on extremal
richness in symmetries of a map.

Classification of regular maps is an important problem because of the outlined implications in
group theory, hyperbolic geometry of tessellations, and Riemann surfaces. Despite considerable
effort and a large number of contributions by both graph and group theorists, it is still a largely
open area because of its enormous difficulty. Development in this field of research has been very
dynamic over the past two decades, with a substantial contribution of investigators included
in this project. For example, orientably regular embeddings of complete bipartite graphs have
been recently classified by G. Jones (submitted), based on earlier results of the team members
R. Nedela and M. Škoviera [17, 18, 31, 32]. The co-authorship of team members also led to a
classification of regular embeddings of hypercubes [7]. R. Nedela and J. Širáň (with A. Breda)



have given the first-ever classification of regular maps for an infinite family of surfaces, those of
negative prime Euler characteristic [4]. In this Proposal we would like to explore possibilities
for further results towards classification of regular maps with a given automorphism group.

Recent development of hardware and computer algebra systems such as MAGMA and GAP
allows us to handle relatively large highly symmetrical structures including regular maps, vertex-
transitive maps, and point-transitive geometric configurations. For instance, AP M. Conder in
2008 compiled a list of regular maps up to genus 202 (see his home page [8]). Our goal is to
adopt selected known algorithms for computation in groups to compilation of lists of equivalence
classes of “small” symmetrical structures of preassigned types, including their invariants. Such
lists can then be applied to formulate, verify, or disprove conjectures about selected classes of
objects. With the help of the structured information accompanying computer-generated lists
one may then be able to extend the findings to formal proofs of existence of infinite families of
objects with preassigned algebraic properties.

Colourings, flows, and configurations Graph colourings constitute the core of graph the-
ory. While being essential in “pure” graph theory for understanding the structure of graphs,
colourings are ubiquitous in the modelling of real world applications. Recently, they have been
appearing in frequency assignments in telecommunications, in register allocations in the theory
of operating systems, in routing and construction of interconnection networks, in optimization
of WDM optical networks, and in many other areas.

Graph colouring problems are usually easy to state but exceedingly hard to solve. In fact,
many known problems related to graph colourings are known to be NP-complete [23]. That
makes them suitable for various algorithm testing, for example local search or genetic algo-
rithms. Graph colouring problems come in a surprisingly great variety: vertex-colourings,
edge-colourings, colourings with local restrictions, various types of graph homomorphisms –
to mention just a few (for more detail see [37]). Several research teams have recently come up
with new approaches to colourings; including circular colourings [61], oriented colourings [20],
and colourings with Steiner triple systems [24, 26, 41, 45]. It is our intention to obtain further
results in some of these areas.

The newly introduced concept of local Tait colourings of cubic graphs [24, 26, 41, 45] has
opened surprising connections of colourings of cubic graphs to the combinatorial design theory
and to finite geometry. A local Tait colouring is a generalization of a 3-edge-colouring of a cubic
graph in which the global restriction on the number of colours is replaced by a local one. This
can be done by allowing an arbitrary number of colours but requiring that any two colours meet-
ing at a vertex uniquely determine the third colour. If we interpret the colours as points of some
geometry, the previous requirement becomes identical to requiring that the three colours at any
vertex of the graph lie on the same line of a suitable geometric configuration. This brings a new
hierarchy into the edge-colourings with more than three colours. As indicated in the paper [41]
co-authored by team members Máčajová and Škoviera, such colourings may shed a new light on
some of the long-standing conjectures concerning snarks and unveil further interesting connec-
tions. It is and astounding fact that both the 5-Flow Conjecture and the Fulkerson Conjecture
can be viewed as local Tait colouring problems where the respective point-line configurations
are the the famous Desargues configuration and the Cremona-Richmond configuration known
from projective geometry. We therefore intend to continue with this research.

1.2 Methodologies

The principal methods and tools in the course of the work on the project will be as follows:

• covering spaces method for constructing objects – graphs, embeddings, designs, flows, and
others – with prescribed symmetry properties;

• methods of combinatorial group theory for the analysis of the symmetry groups of combi-
natorial objects;



• geometric methods for the study of maps as quotients of hyperbolic tessellations;
• group representation methods for handling the corresponding hyperbolic isometry groups;
• spectral methods in the investigation of issues related to construction and classification of

strongly regular graphs;
• methods of finite geometry for the study of flows and colourings in graphs;
• Pólya’s method and the generating functions method for enumeration of combinatorial

structures.

The method of computational experiments has also proved extremely useful in a number of
important cases, including discoveries of new infinite families of highly symmetric maps, graphs
and other discrete structures.
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