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1 Individual Project’s contribution to the CRP

1.1 Aims and Objectives
Graphs are ubiquitous models in molecular biology at a variety of different levels of description,
modeling nature at different resolutions and implementing relationships between the former
types of models. Some of these representations are discrete approximations of geometric objects:
molecular structures are seen as graphs whose vertices are either atoms (in models of chemistry)
or more complex monomers (in coarse grained models of RNA and protein folding). Graphs and
hypergraphs also describe the sequence and phenotype spaces on which evolutionary processes
“live”, as well as chemical reaction networks or gene regulatory networks describing mass and
information flow in a cell. These graph models are intimately linked: the graphs representing of
RNA and protein, for instance, are the nodes of the phenotype graph, while molecular graphs
form the node set of chemical networks. Regulatory networks, on the other hand, link molecular
graphs and the graphs of biopolymer structures. Aspects of (molecular) phylogenetics can also be
understood in this setting as the reconstruction of trajectories from a small subset of “observed”
vertices. Recent large-scale computer simulations [6] combine several of these discrete models and
highlight that the individual models are strongly coupled. From a mathematical point of view,
however, the intimate relationships between these layers of description are poorly understood
and so far have not been investigated in any detail. The Leipzig group proposes to explore
systematically the connection between the geometric graph models of molecules and
polymers on the one hand, and the graphs that represent the relationships among
them.

In the case of biopolymers (both RNA and protein), the processes of structure-formation
(folding) and their evolution are naturally described a common graph Γ whose vertices are pairs
(x, y) of genetic sequences x and structure graphs y. Only pairs of sequence and structure are
admissible that are compatible: the vertices of y are in 1-1 correspondence with the sequence
positions, and in the case of RNA, y can only have edges that conform to the rules of base-pairing
in nucleic acids. An energy function e(x, y), depending both on the graph structure y and the
sequence x (which can be seen as a vertex labeling superimposed on y), determines implicitly
which structures are likely to be formed from x. In line with physical reality, the e(x, y) is given
as the sum of contributions from individual molecular interactions, i.e., as a sum of contributions
evaluating small labeled subgraphs of y. In the case of RNA, for example, the subgraphs are
exactly the elements of the minimal cycle basis of y, in lattice models of proteins one typically
uses edge weights. Edges in Γ are determined by small changes in either sequence (mutations)
or structure, creating a locally product-like structure. The folding problem, thus, is formalized
as y∗(x) = argminye(x, y), while evolutionary questions are often approximated as optimization
problems on subgraph induced by (x, y∗(x)), with a fitness function f(y∗(x)). Empirically,
both combinatorial landscapes (folding: y 7→ e(x, y) for a fixed sequence x; evolution: x 7→
f(argminye(x, y))) and the so-called genotype-phenotype map x 7→ argminye(x, y) have been
studied in detail by the PI and other [12, 14, 17, 5]. The sequence design problem, i.e., the search
for all sequences x that fold into a given structure z, formally S(z) = {x|z = argminye(x, y)},
can be seen as just another aspect of the combined sequence-structure-energy landscape.

Here we propose to investigate systematically the consequences of the additive
energy functions on the geometric structures of both landscapes, in particular w.r.t.
geometric properties such as local optima, saddle points, valleys and basins. From
the subgraph of Γ induced by the vertices of the form (x, y∗(x)) a phenotype graph Σ derived
by interpreting the genotype-phenotype map as a (weak) graph homomorphism. Here we ask
when Σ has local product structure since the “coordinate axes” of this product correspond to
independently evolvable characteristics [16]. Furthermore, we wish to understand how these
local product structure is related to partitions or other, more complex relationships,
on the underlying molecular structure graphs y. In particular, when to geometric



domains correspond to independently evolvable modules, at least approximately?
The second field in which “intertwined” (hyper)graphs are of central interest is that of

metabolism and its regulation. In metabolic networks, vertices are formed by molecular graphs
representing small organic molecules. In the context of gene regulation, both small molecules
and biopolymers (typically modeled as coarse grained graphs as outlined above) may appear in
the same graph. Both chemical reactions and regulatory interactions are naturally modeled as
directed hyperedges. Again there is an intimate link between the geometric graph models de-
scribing molecules and the network in which they are embedded. Conservation of atom type and
bond order and the need to re-arrange chemical bond orders locally implies hyperedges/reactions
are restricted to a fairly small subset of feasible transformations, and hence impose constraints
on the local structure of chemical networks. Similar locality principles seem to govern regu-
latory interactions: similar proteins typically have similar functions and interaction partners,
giving rise to similar local structures. Again, we are interested in how these constraints
can be understood formally. Pathways, detours, and cycles are of particular interest in this
context, hence the cycle structure of graphs and hypergraphs will be emphasized in this part of
the project.

Regulatory network graphs themselves, finally, are subject to evolutionary changes as a
consequence of evolutionary changes in the underlying molecules. Indeed, phenotype spaces
whose vertices are e.g. Boolean networks have been discussed in the literature [4, 3]. Still, these
are ultimately determined by the underlying molecule graphs at the lowest level. Molecular
evolution thus prompts us to develop a theoretical frame for hierarchically organized
graphs of graphs of graphs and to understand in detail how lower levels constrain
the higher ones as soon as higher-level edges connect entities that similar up to
local perturbations.

1.2 Methodologies
The two topical fields are connected by many methodological similarities and overlaps. Cycle
bases underly the standard energy model of RNA secondary structures [10] and have been
employed more recently also as a means of describing complex three-dimensional RNA structures
[9, 13]. While bases are usually not unique, well-defined unique generating sets such as the
relevant cycles [15] have been considered both for biopolymer structures [7] and as a means
of characterizing molecular graphs [1]. Here, we will explore alternatives associated i.e., with
(strictly) fundamental and robust cycles bases [8, 11] and consider the analogous problems for
(directed) hypergraphs. Both abstract characterization of cycle sets and algorithmic approaches
will be of interest. Since the (hyper)-edges of the “informational” higher-level graphs are derived
from or implicitly determine (partial) homomorphisms of adjacent structural graphs, there is
a particular interest in the behaviour of cycle bases and more general cycle sets under these
maps. Thus we will in particular explore (generating) cycle sets that are well-behaved under
small perturbations.

A second recurrent issue is that of approximate product-like structures, and more generally
of locally homeomorphic copies that naturally arise at the higher level when transformation
between lower-level graphs commute “most of the time”. This is often the case e.g. in chemical
reactions affecting two disjoint ”functional groups”, whence they typically can be exchanged in
their order. This suggest a generalization of the fibers of product graphs (which are isomorphic
copies of a factor) to images of different homomorphisms from the same factor. Graph bundles
are one possible construction of this type. Here one asks for restricted weak homomorphisms that
lead to a near product structure over an fiber F and a given base B such that the pre-images of
edges of B are locally products. Much more can be done if one does not ask for isomorphic fibers.
In general, one may consider partitions of the vertex set such the the subgraphs induced by the
classes of a partition play the role of co-factors. Geometric notions, in particular convexity, are
an indispensable tool in the context of product structures. In a more general setting, methods
from information geometry may also come in handy to determine systems of partitions that are
as product-like as possible. This in turn suggest to investigate relations R among graphs that
are more general than graph homomorphisms: Interpreting graphs as relations on their vertex
sets, one may ask for unique, minimal, maximal, or invertible solutions of R+ ◦ E ◦ R = E′,



possibly with special rules for the diagonal elements.
The third aspect is the energy, cost, or fitness function defined on the vertex set of higher-level

graphs that forms an integral part of the models, turning the graph of graphs into a combinatorial
landscape. From this point of view, geometric properties such as local optima, various types of
valleys, saddle points, and geodetic paths are naturally characteristics of practical importance,
since they determine the behavior of dynamical systems defined on the landscapes, i.e., they
govern the time course of evolutionary adaptation and molecular folding kinetics alike. The
landscapes are characterized naturally in terms of their projection on the eigenspaces of the
Laplace matrix of the underlying graph [12]. Here we specifically plan to explore the connection
of geometric properties such as saddle heights and volumes of basins with the spectral analysis
of the landscapes, which constrain the number of nodal domains [2], the values of local optima,
and the value differences between neighbors.
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