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Abstract

In this sequel to the paper ‘Arc-transitive abelian regular covers of cubic
graphs’, all arc-transitive abelian regular covers of the Heawood graph are
found. These covers include graphs that are 1-arc-regular, and others that
are 4-arc-regular (like the Heawood graph). Remarkably, also some of these
covers are 2-arc-regular.

1 Introduction

This is a sequel to the paper ‘Arc-transitive abelian regular covers of cubic graphs’
by the same authors [4], in which a new approach was introduced for finding arc-
transitive abelian regular covers of a given finite symmetric cubic graph, and applied
to find all such covers of Ky, K33, the cube (3, and the Petersen graph. In this
paper, we do the same for the Heawood graph.

A significant amount of background material was given in [4], but we summarise
some of the important details here, before proceeding.

First, a graph Y is called a cover of a another graph X if there exists a surjective
mapping p: V(Y) — V(X) which preserves adjacency and is also locally bijective
(preserving valence at each vertex). Any such p is called a covering projection. Second,
an automorphism of a graph X is a bijective graph homomorphism from X to X, and
under composition, the automorphisms of X form a group, called the automorphism



group of X and denoted by Aut X. The connected graph X is called symmetric (or
arc-transitive) if Aut X is transitive on the arcs (ordered edges) of X. Also a subgroup
L of Aut X is called semi-reqular if the stabilizer in L of every vertex or arc of X is
trivial — that is, if L acts regularly on each of its orbits on vertices and arcs of X.

If p: Y — X is a covering projection, then an automorphism « of X is said to
lift to an automorphism (G of Y if &« o p = p o 3. The set of all lifts of the identity
automorphism of X is called the group of covering transformations, or voltage group,
and is sometimes denoted by CT(p).

For any semi-regular subgroup N of Aut X, we may define a quotient graph Xy
by taking vertices as the orbits of NV on V(X)) and edges as the orbits of N on F(X),
with the obvious incidence. A covering projection p: Y — X is called regular if
there exists a semi-regular subgroup N of AutY such that the quotient graph Yy
is isomorphic to X. In that case, we call Y a regular cover of X, with covering
transformation group N; also Y is called an abelian cover (and p an abelian covering
projection) if the group N is abelian.

Next, an s-arc in a graph X is an ordered (s+1)-tuple (vg,v1, ..., vs) of vertices
such any two consecutive v; are adjacent, and any three consecutive v; are distinct.
A group of automorphisms of X is called s-arc-transitive if it acts transitively on the
set of s-arcs of X, and s-arc-regular if this action is sharply-transitive, and then the
graph X itself is called s-arc-transitive or s-arc-regular if its full automorphism group
Aut X is s-arc-transitive or s-arc-regular, respectively.

If X is cubic (3-valent), then by theorems of Tutte [7, 8|, every arc-transitive
group of automorphisms of X is s-arc-regular for some s < 5. Moreover, every such
group G is a smooth quotient of one of seven finitely-presented groups Gy, G5, G,
Gs, G}, G? and G5, which can be presented as follows (see [6, 3]):

Gy = (hya| h*=a*=1) (the modular group);
Gy = (h,p,a| h* =p*=a®> =1, php =h~", a 'pa=p);

h,p,a| B* =p* =1, a®> =p, php =h~"', a”'pa=p);

G35 = (
Gy = (h,p,q,a| B* =p* =¢* =a®> =1, pg=qp, php =h, ghg=h"", a 'pa = q);
Gi=(hpgra|lh®=p"=¢=r*=ad*=1, pg=qp, pr=rp, (qr)* =p,

h='ph=q, h='qh =pq, rhr =h7", a~'pa=p, a"'qa =r);

Gi=(hp,qra|l’=p"=¢=r"=1,a>=p, pg=qp, pr=rp, (qr)* =p,
h=tph =q, h=i¢h =pq, rhr =h™', a ‘pa=p, a lqa=r);
Gs=(h,p.q,r,s,al B> =p*=¢*=r"=s"=a’=1, pg=qp, pr =rp, ps = sp,
qr =rq, qs = sq, (rs)* =pq, h™'ph=p, h™'qh =r,
h=rh = pqr, shs =h™', a”'pa=4q, a”'ra=s).

In fact if G is s-arc-regular, then G is a smooth quotient of G or G, where i = 1



or 2 depending on whether or not the group contains an involution a that reverses an
arc (in the cases where s is even). Conversely, every smooth epimorphism from G, or
G! to a finite group G gives rise to a connected cubic graph on which G acts as an
s-arc-regular group of automorphisms.

In this paper, we determine all arc-transitive abelian regular covers of the Heawood
graph H, which is the incidence graph of the Fano plane, of order 14. This graph is
cubic and 4-arc-regular, with automorphism group PGLy(7) of order 336, which is a
smooth quotient of the group G, say G} /N. The Heawood graph also admits eight
other arc-transitive groups of automorphisms, lying in a single conjugacy class, with
each being isomorphic to a semi-direct product C7 x3 Cg (where the 3 indicates that
a generator of Cy conjugates each element of C; to its 3rd power), of order 42. One
of these arc-regular groups is G1/N, which for the time being we may call B.

If Y is an arc-transitive regular cover of H, then some arc-transitive group of
automorphisms of Y consists of the lifts of all elements in an arc-transitive subgroup
of Aut’H, and we may take the latter subgroup to be B = G;/N = C; x3 (s, and
the former group of automorphisms of Y as GG1/J for some normal subgroup J of G
contained in N.

We seek all possibilities for J such that the covering group N/J is finite and
abelian. In fact, since every finite abelian subgroup is a direct product of its Sylow
subgroups, we can restrict our search to those .J for which the index |N:.J| is a prime-
power. We do this for powers of primes other than 7 in Section 3, and for powers of
7 in Section 4, after some preliminary observations in Section 2. Then we summarise
our findings in Section 5, and consider the possibility of additional automorphisms in
Section 6, before giving a complete classification as our main theorem in Section 7.

One remarkable finding is that although every arc-transitive group of automor-
phisms of the Heawood graph H is either 1-arc-regular or 4-arc-regular, there exist
regular covers of H that are 2-arc-regular. Also in some cases, the covering graph can
be obtained in two different ways, via non-isomorphic groups of covering transforma-
tions (having the same order but different exponent).

2 First steps

Take the group G}, with presentation (h,a,p,q,r | h® = a®> = p?> = ¢* = r? = (pq)? =
(pr)? = p(qr)* = h='phq = h=qhpq = (hr)?* = (ap)? = agar = 1), and observe that
the three elements h, a and p suffice as generators (because ¢ = h™'ph and r = aqa).
This group G{ has two normal subgroups of index 336, both with quotient PGL(2, 7),
but these are interchanged by the outer automorphism (induced by conjugation by
an element of the larger group Gs) that takes the three generators h, a and p to h, ap
and p respectively, and so without loss of generality we can take either one of them.

We will take the one that is contained in the subgroup G; = (h, a); this is a normal
subgroup N of index 42 in Gy with G1/N = B = C7 x5 Cs.



Using Reidemeister-Schreier theory (or the Rewrite command in MAGMA [1]), we
find that the subgroup N is free of rank 8, on generators

wy = (ha)b, wy = hah™tah~ahahah™a,
wy = (h™1a)®, wy = h~tahah~ah~'ahaha,
ws = hah™'ahah™'ah™'aha, wg = hahah™'ahah™'ah™'a,
wy = h~tahahah™‘ahah™'a, ws = h~'ah~‘ahahah~‘aha.

Easy calculations show that the generators h, a and p act by conjugation partic-
ularly nicely, as below:

h=luh = w3 a lwia = wy' p~lwip = ws
h=lwyh = w;l alwya = w;l plwep = wg
h=twsh = wgw;l a lwsa = wl_1 plwsp = wy
h=Yw,h = w;le a lwa = u18_1 plugp = ws
h='wsh = wg' a lwsa = wit plwsp = wy
h=lwgh = w;'! a lwga = wg' plwegp = we
h=lwrh = wiw, a lwra = wyt plwp = wy
h=lwsh = w5w8_1 a lwga = w4_1 plwgp = wy.

Now take the quotient G} /N’, which is an extension of the free abelian group N/N’ =
Z8 by the group G} /N = PGL(2,7), and replace the generators h, a,p and all w; by
their images in this group. Also let K denote the subgroup N/N’, and let G be
G1/N'. Then, in particular, G is an extension of Z® by B = G| /N = C; x3 Cs.

By the above observations, we see that the generators h, a and p induce linear
transformations of the free abelian group K = Z8 as follows:

o 0 -1 0 0 0 0 O

o 0 o0-1 0 0 0 O

o 1 0 O 0 0 -1 O

b o 0-1 0 0 1T 0 O
o 0 o0 0 0o 0 0 =1 |

o o0 o o o0 0 -1 0

1 0 o0-1 0 0 0 O

o 0 o0 o0 1 0 0 -1

o 0 -1 0 0 0 0 O

0O -1 0 O O 0 0 O

-1 0 0 0 0 0 0 O

. o 0 o0 o0 0 0 0 -1
o 0 o0 0 0o 0 -1 0}

o o0 o0 o 0 -1 0 O

o 0 o0 o0 -1 0 0 O

o o o0o-1 0 0 0 O



and
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SO OO = O OO

0
0
1
0
0
0
0
0

OO OO OO O+

0
1
0
0
0
0
0
0
P

These matrices generate a group isomorphic to
erating a subgroup isomorphic to C; x3 Cg.

GL(2,7), with the first two gen-

Next, the character table of the group C;7 x5 Cy is as follows:

Element order 1 2 3 3 6 6 7
Class size 1 7 7 7 7 7 6
X1 1 1 1 1 1 1 1
X2 1 -1 1 1 -1 -1 1
X3 1 A2 )2 A 1
X4 1 A2 A A A2 1
X5 1 -1 DD T T N |
X6 1 -1 )2 A=A =21
X7 6 0 0 0 0 0 -1

where ) is a primitive cube root of 1.

By inspecting traces of the matrices of orders 2, 3, 6 and 7 induced by each of a,
h*L) (ah)** and [a, h], we see that the character of the 8-dimensional representation
of C7 x13Cg over Q associated with the above action of G = (h, a) on K is x5+ X6+ X7,
which is expressible as the sum of x5 + x¢ and x7, the characters of two irreducible
representations over Q of dimensions 2 and 6.

In the next two sections, for every positive integer m we let K™ denote the sub-
group of K generated by the mth powers of all its elements, and if m is a prime-power,
say m = k*, then we will consider G;-invariant subgroups of each layer K; 1/K; of
K/K™ where K; = K (*) for every non-negative integer j, in order to find G-
invariant subgroups of K /K™ itself.

3 Characteristic other than 7

When we reduce by any prime k, the quotient K/K® = (Z;)® is the direct sum
of two Gi-invariant subgroups of ranks 2 and 6, and the latter is irreducible when
k # 7. In fact, these two subgroups are the images of the normal subgroups U and
V of ranks 2 and 6 in G generated by



1 1

Uy = w1w3w5_1w6_1w7_ and uy = w2w4w5_1w6_1w7_ wg
and
_ _ -1 _ _ -1 _ -1 d _ -1 .
V1 = W1, V2 = WaWy , V3 = W3, V4 = WyWg , Vs = W5Wx an Vg = WeWr, Ws;

with conjugation of the respective generators by h and a given as follows:

h -1 h _ —1 a _ . —1 a _ —1
uy = Uy Uz, Uy =1U; , uj=wu; and wuy=u,",
h -1 h _ -1 h __ h__ -1, -1 h -1 h _ -1
a _ . —1 a _ . —1 a _ . —1 a __ a __ a __ .. —1 —1
Uy = U5, Vg = Uy Us, V3 =V, Vy = Uy, Uy = Us, Vg = Uy UsVg .

Hence for every prime k # 7 and every pair (c,d) of integer powers of k, there
exists a Gi-invariant subgroup L of K with index |K : L| = ¢%d® and with quotient
K/L = (Z.)*®(Zaq)®, generated by the elements u for 1 <i < 2and v/ for 1 < j < 6.

When k£ = 2 mod 3 and k > 2, the corresponding subgroups of K/K®) are both
irreducible as GGi-invariant subgroups, since the mod k reductions of the characters
X5 + X6 and x7 are irreducible over Zj. The same holds also when k = 2, since there
is no Gi-invariant cyclic subgroup of the rank 2 subgroup in that case. Hence for
every prime k = 2 mod 3, the only G-invariant subgroups of K with index a power
of k are the subgroups with quotients K/L = (Z.)> @ (Z4)® described above.

When k& = 1 mod 3, however, the rank 2 subgroup of K /K ®*) splits into the direct
sum of two Gi-invariant subgroups of rank 1, generated by the images of

2 2 2
2 = WIWyW3W Ws Wy W We

for t € {\, A\?}, where ) is a primitive cube root of 1 in Zj.

Here

B — 1

1 — -t -
Wy Wy Wg Wy Wg =2 ,

1

a _ . —1, —t —
Zp = Wy Wy Wy

while

h o —t2 1 14ttt —t —t 1442 2
A =Wy Wy W3 Wy Wi Wg Wr o Wg

the image of which in K/K® is zt_tQ, since t* +t+ 1 = 0 mod k in each case. The
same holds when k is replaced by a higher power of K, say m = k’: if X is a primitive
cube root of 1 in Z,,, and z = wiwlwswiw wl wlw for t € {A, A2}, then the
image of each of z, and zy> generates a G'j-invariant subgroup of rank 1 in K/K™,
and their direct sum is a Gi-invariant subgroup of rank 2. Moreover, the latter is
complementary to the image of V' (of rank 6) when &k # 7.

It follows that for every prime & = 1 mod 3, and for every triple (b, ¢, d) of powers
of k with b # ¢, there is also a G-invariant subgroup L of K with index |K : L| = bed®
and quotient K/L = 7y & Z. ® (Z4)®, generated by the images of the elements (zy)°,
(2)2)¢ and vjd for 1 < 5 < 6. Moreover, when k # 7, each layer of any G-invariant
subgroup L of K with index a power of k must have rank 1, 2, 6, 7 or 8, and it is
easy to see that there are no other possibilities for L (when £ =1 mod 3 and k # 7).



When k = 3, the quotient K/K®*) = (Z3)® has six G;-invariant subgroups. These
include the subgroups of ranks 0, 2, 6 and 8 that occur for every other prime £k,
plus the cyclic subgroup generated by the image of z; = wjwwzwwswewrws (which
coincides with the image of ujus = w1w2w3w4w5_2w6_ 2w7_ 2w8), and the subgroup of
rank 7 generated by the images of z; (or ujus) and the elements v; for 1 < j <6.

In K/K®, however, there is no G-invariant cyclic subgroup of order 9; the only
G1-invariant subgroups of K/K ) of rank 1 or 2 are unique subgroups isomorphic to
Zs, L3 ® L3, Ty ® L3 and Zg ® Ly, generated by the images of {(uus)3}, {(uius)?, ud}
(or {u,u3}), {uug, ud} and {ujug, us} (or {uy,us}), respectively. It follows that
every Gp-invariant subgroup L of K with index a power of 3 is generated by the
elements (u1uz)’, ug and v for 1 < j < 6, where b, ¢ and d are powers of 3 with ¢ = b
or 3b, in which case |K:L| = bed® and K/L 2 Zy, & Z. ® (Z4)".

This completes the analysis of G-invariant subgroups of K/K() when m is a
power of some prime k # 7. These will be summarised in a table in Section 5.

4 Characteristic 7

The case k = 7 is not quite so straightforward. In this case, each layer can have rank
0,1, 2, 3, 4, 5, 6, 7 or 8, depending on the layers above it. Here, as we will see,
in K/K™ the images of the subgroups U and V of ranks 2 and 6 considered in the
previous section intersect non-trivially in a subgroup of rank 1.

To describe the possibilities for a Gj-invariant subgroup of each layer, again it
helps to let A be a primitive cube root of 1 in Z,, (when m = T7¢), and define
z = wwlwswiol w ww for t € {\, A?}. This time, however, we choose A so
that A = 2 mod 7 (while A2 = 4 mod 7). Also, take v; = wy, vy = wow; ', vz = ws,
vy = wawg ', vs = wyw; ' and vg = wew; “wg (as before), and define y; = wyw{ for
each t € {\,A\?}. Then an alternative basis for the group K/K™) is formed by the
images of the following eight elements:

11 = 2y, = wywpwswpw wd wh w, Ty = zye = wywy waw¥ wrwiwrwg
T3 = VaUsv2UsvE = wowswiwswiw,t, x4 = v3vg 2 = wawg *wiwg 2,

T5 = 008 = wawiw; Swg T = VY7 = wewrwy 2,

Ty = Vg = wGw;IU)S, Ty = Y2z = w7w8)‘2.

With help from MaGMA [1], we find that the group K/K™ of order 7% has exactly
22 Gi-invariant subgroups. We will denote the trivial subgroup by 7y and the group
K/K itself by Ty, and then the 20 non-trivial proper G,-invariant subgroups can
be labelled T; to T, and summarised as follows (in Table 4.1):



Rank | Generated by images of Rank Generated by images of
T1 1 T T2 1 To
13 2 Ty, T2 Ty 2 Ty, T3
15 3 Ty, Ta, T3 T 3 Ty, T3, T4
T7 4 Ty, Lo, T3, T4 Tg 4 T1, Ty, T4, Tj
Tg 5 Ty, Lo, T3, T4, Ty Tl[) 5 T, T3, Tg, T, Tg
TH 5 T1, Ty, Ty, Ty, ToTg T12 5 r1, T3, T4, Ts, I22I6
T13 5 r1, Ty, T4, Ts, Z'QSZE(; T14 5 r1, T3, T4, Ts, I24[E6
T15 5 r1, T3, T4, Ts, JIQE)ZE(; T16 5 T1, T3, T4, Ts, 1326.%‘6
T17 6 r1, 9, T3, T4, Ty, Tg Tlg 6 T1, T3, T4, Ts, 13243}6, Ty
Tlg 7 Ty, L9, T3, T4, Ts, Tg, L7 T20 7 Ty, T3, T4, Ts, 2724I6, T7, Tg

Table 4.1: The non-trivial proper Gi-invariant subgroups of K/K )

When the exponent m of K/L is a higher power of 7, say m = 7° with ¢ > 1,
finding the G;-invariant subgroups of K /K (™) is much more challenging than in earlier
cases (namely in the previous section and in [4]).

For all j > 0, the G;-invariant subgroups of the jth layer K;_;/K; = K@ /K@)
of K are isomorphic to the Gy-invariant subgroups of K /K (M and are generated by
the images of the (777!)th powers of the corresponding sets of z; in each case. In some
sense, what we have to do is see how the possibilities at each layer can fit together.

For each t € {\, A\?} the image of z; generates a G-invariant subgroup of rank 1
in K/K and these two subgroups may be viewed as a tower of copies of T} and a
tower of copies of T5 (from Table 4.1). The images of z, and z)2 together generate a
(GG1-invariant subgroup of rank 2, coinciding with the image of the subgroup U defined
earlier, since in K /K™ the image of z is the same as the image of uju}, for each ¢
(because —1 — ¢t = t? mod m). (Also conversely, 2z} = uf™" and 2} 'zy2 = u)’ )
This subgroup is a tower of copies of the subgroup T3 from Table 4.1.

Also, and again as before, the subgroup V generated by v; = wy, vy = wow; *,

V3 = W3, Uy = w4w8_1, Vs = w5w7_1 and vg = wGw;lwg is GGq-invariant, and so this
gives a G-invariant homocyclic subgroup of rank 6 in K /K™ which can be viewed
as a tower of copies of Tig. (It is an easy exercise to show by arithmetic mod 7 that
in K/Km, the images of each of the generators xy, x3, x4, T5, v4x¢ and 7 (for Tig) is
expressible in terms of the images of the generators v; to vg of V.)

Note that the intersection of the images of the rank 6 subgroup V and the rank
2 subgroup U (or equivalently, the intersection of the T3 and Tg towers) is neither
trivial nor one of the rank 1 towers generated by z, and 22, except in the case m = T:
in fact, it is the cyclic subgroup of order 7 generated by the image of 2,7 (= x,7).

Next, for each t € {\, A2}, the image of the subgroup generated by V U {y;} is a



G-invariant subgroup of rank 7 in K /K™ since

—(1+t+t2) -1t t , —(1+t+t2)

lwgws_t = wl(w4w8_1)_1(w5w7_1)t(w7w8t)tw8 = 01Uy UglYy Wy

h —
Yy = Wiy

(with 1+ ¢+ t* = 0 mod m), while

1 —t,,—1, -1

gt = ws wy’ = (wawg ) (wswr ) T wrwd) T = vy tosty,

These two homocyclic subgroups of rank 7 may be viewed as a tower of copies of T
(when ¢ = )\) and a tower of copies of Ty (when ¢t = A\?), since in K/K (7 the images of
Ty, x¢ and xg coincide with those of vjvyvsvfvivdys, vey? and yy: respectively. The
only other G-invariant subgroup of Ty; = K/K7) of rank 6, namely T}, is generated
by the images of vivZ, vavd, V3vd, Vv, vsvd and vey?.

It turns out that the above towers of copies of T}, Ts, T3, Tig, Thig or Ty account
for all of the homocyclic G-invariant subgroups of exponent m in K/K but that
will not become clear until we have found all the G1-invariant subgroups of K /K™,
below.

To see exactly what happens, it is helpful to consider the case m = 7> = 49.
Subgroups of K /K that have rank 8 must all have second layer equal to K /K>
(and a subgroup of K/K(7) as first layer), and are not so interesting for us. Similarly,
subgroups of exponent 7 have trivial first layer, and we will ignore those for now.

There are exactly 101 non-trivial subgroups of K /K™ of exponent 49 and rank
at most 7 that are normal in G/K (49) " and these can be summarised as follows, with
V) denoting the set {vy?, vo?, v3?,v47, v57, v67} of jth powers of the generators of V:

Rank 1:
e two subgroups isomorphic to Z,g, generated by the images of x; and xo;

Rank 2:
e three subgroups isomorphic to Z,g ® Z7, generated by the images of
{21,257}, {2y, 237} and {9, 2,7 };
e one subgroup isomorphic to (Z4)?, generated by the image of {xy,z>};
Rank 3:
e three subgroups isomorphic to Zsg @ (Z7)?, generated by the images of
{1,257, 237}, {xy, 237, 247} and {@q, 217, 237 };
e one subgroup isomorphic to (Zsg)? @ Zz, generated by the image of {x1, zo, 73" };

Rank 4:
e three subgroups isomorphic to Zs @ (Z7)?, generated by the images of

{3717 .1'27, .1'37, .1'47}, {a:la 1'37, 1'47, 1'57} and {an xl7a .Z'37, .73'47};
e one subgroup isomorphic to (Zsg)2®(Z7)?, generated by the image of {x1, z2, 237, 14" };
Rank 5:
e 15 subgroups isomorphic to Zy @ (Z7)*, generated by the images of

9



;NT .
{z1, x27', w3", g w5}, {w, 23T wa " w7, (2'we) '} for 0 < < 6, and
{roa6™, 21", 25", 24", 25"} for 0 < i < 6;
e 7 subgroups isomorphic to (Z49)? @ (Z7)3, generated by the images of
{1, m0m6™, 23", 247, 257} for 0 < i < 6;

Rank 6:

e 9 subgroups isomorphic to Zsg @ (Z7)®, generated by the images of
{xh I'277 1’37, I’47, I’57, x67}7 {x% I‘17, I‘37, I47, I57, Iﬁ'?}a and
{212} UV for 0 < i < 6;

e two subgroups isomorphic to (Zs9)* @ (Z7)*, generated by the images of
{xla Zo, I37, I477 I57, I67} and {1'11'814, l'g} U V(7)a

e one subgroup isomorphic to (Z4)?® @ (Z7)3, generated by the image of
{zas', 25,24} UV

e one subgroup isomorphic to (Zy)* @ (Z7)?, generated by the image of
{x1x8147 X3, Ty, x5} U V(7)7

e 7 subgroups isomorphic to (Z4g)® @ Z7, generated by the images of
{m128", 23, 14, 75, (252 26)267 U VD for 0 < i < 6;

e one subgroup isomorphic to (Zsg)®, generated by the image of V);

Rank 7:
e 9 subgroups isomorphic to Zsy ® (Z7)®, generated by the images of
{21, 25"} UV Azy (2627 ) YU VD and {z1287, (w62, 1)} UV for 0 <4 < 6;
e 9 subgroups isomorphic to (Zsg)? @ (Zr)°, generated by the images of
{m12" 23, (2627, ) T UV {ry 23, 25" UV and
{21287, 7, (2627 )T UV for 0 < i < 6;
e three subgroups isomorphic to (Zs)* @ (Z7)*, generated by the images of
{m128" 29, w3, (2627 )T UV D Lz 28" 23, 14, (2627 )7 UV and
{21, 23,24, 28"} UV,
e three subgroups isomorphic to (Z)* @ (Z7)*, generated by the images of
{m12", 19, w3, 14, (2627 )T YUV D {a 28 23, 24, 75, (162717} U VD and
{21, 23,04, 75, 28" UV,
e 15 subgroups isomorphic to (Zsy)® ® (Z7)?, generated by the images of
{21, 23, 14, 75, (25126267, 257} UV for 0 <4 <6, {wyas', 29, 3, 24, 25} UV,
and {x128", 13, 14, 15, 176, (627 1) T UV for 0 < i < 6;
e three subgroups isomorphic to (Z49)® @ Z7, generated by the images of
{m128", 29, 13, 14, 75, 26y UV D, VO U {67} and VD U {257}
e two subgroups isomorphic to (Zy9)7, generated by the images of

VO U {6} and VY U {25}

Now just as we did for the examples considered in [4], we may represent each of
the above subgroups as a pair (7;, T;) indicating the first layer Ly/L; and second

layer Ly /L, of the subgroup L, respectively, where L; = LN K; = LN K™) for all j.
In order, the pairs that occur are as follows:
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Rank 1: (7%,7)) and (T»,T3) once each;

Rank 2: (T%,T3), (T1,Ty) and (T3, T3) once each; (73,7T3) once;

Rank 3: (T%,T5), (T1,Ts) and (T3, T5) once each; (73,7T5) once;

Rank 4: (T3,T%), (T1,Tg) and (1%, T7) once each; (T3,7%) once;

Rank 5: (73,7}) for 9 < j < 16 once each, and (73, Ty) seven times;
(T3,Ty) seven times;

Rank 6: (7%,T17) and (T3, T17) once each, and (77, Tg) seven times;
(T3,Ty7) and (T}, T1s) once each; (7§, T1s) once; (Tg,T1g) once;
<T147 T18> seven times; (Tlg, Tlg) once;

Rank 7: (T3, Ty) and (T3, T19) once each, and (77, T}g) seven times;

(Ty, Thg) and (T}, Tog) once each, and (T3, Tig) seven times;
(T5,Thg), (Ts, T19) and (T§, Toy) once each;

(T7,Th), (T3, T19) and (T3, Tsg) once each;
(

(

o3 5

4, Tho) seven times, and (T}, T19) for 9 < j < 16 once each;
7. T19), (Tis, Thg) and (T1s, Tog) once each;
(Tlg, Tlg) and (Tg(), TQQ) once each.

=5

Note that these pairs are also precisely the pairs that can occur for the GGy-invariant
subgroups of any given ‘double-layer’ section K;_1/K;; of K.

One thing that is immediately clear from them is that each allowable pair occurs
either once only, or exactly seven times. Those that occur seven times are the follow-
il’lgi (Tl,Tlg), (Tl,Tlg), (Tg,Tg), (Tg,Tg), (T3,T19), (T14,T18> and <T14,T20>; these are
the cases involving an extra parameter ¢, with 0 <7 < 6.

Moreover, the generating sets for the subgroups that arise in the case of the pair
(T3,Ty) are easily obtained from those for the pair (T3, Ty), simply by adjoining x; =
zy, the generator of a rank 1 tower. Similarly, those for the pair (77,7T}9) are easily
obtained from those for the pair (77, T1s), by adjoining (z¢z7')" = y7, while those
for the pair (T3,7T19) can be obtained from those for the pair (73, 719) by adjoining
Ty = 2zy2 (or from the pair (T%,Ty) by adjoining zy2 and yy), and those for the pair
(T4, Thg) can be obtained from those for the pair (T4, T1g) by adjoining zg7 = yx27.
Adjoining these extra generators does not create any particular complications, and
so for larger values of m, we need only pay close attention to the cases involving the
pairs (Tl,Tlg), (TQ,TQ) and (T14,T18).

When m = 343, there are precisely 216 G,-invariant subgroups of K /K that
have exponent m and rank at most 7, and we find the following triples occur for the
subgroups in the first three layers of these subgroups:

Rank 1: (73,T1,T}) and (T3, T, T3) once each;
Rank 2: (13,11, T3), (T3, T3, Ts), (11,13, Ts), (T2, T3,T3), (13,13, T3) and (T1, T1,T})
once each;

Rank 3: <T17T17T5)7 (T27T27T5)7 (T17T37T5)7 <T27T37T5>7 (T37T37T5) and <T17T17T6>
once each;
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Rank 4: (11,11, T%), (To, To, T3, (T1. Ty, Tv), (T, Ty, T5), (T3, Ty, Ty) and (Ty, Ty, Tx)
once each;
Rank 5: (74,74,T}) for 9 < j <16 once each,
and (Ty, Ty, Ty), (11,15, Ty), (12,13, Ty) and (13,713, Ty) seven times each;
Rank 6: (7T%,T1,T17), (Ts, T, T17), (11,15, T17), (T3, T3, T17), (13,15, Th7),
(Ty, Ths, Ths), (T, Tis, Ths), (Ts,Ths, Ths) and (Tis, Tis, Ths) once each,
and (11, Ty, Tig), (T1, Tis, T1s), (Tha, T1s, T1s) seven times each;
Rank 7: (T3, Ty, Thg), (T2, T5, Thg), (1o, 17, Thg), (T2, Th7, The), (T4, Tis, Tho), (Ts, Ths, The),
Ty, Tis, The), (Ths, Tis, The), (T2, Thg, Thy), (1}, The, Thg) for 4 < j <19,
1y, Ty, Too), (11, T4, Too), (Th, T, Tao), (11, Ts, T20) (T, Ths, Too), (Ts, Ths, Tho),
T, Ths, Too), (T1s, Tis, To0), (11, T20, Tao), (T, Too, Too), (16, 120, Tho),
Ts, Too, Too), (Ths, To0, Tao), (T20, T20, Too) once each;
and (11,71, Th), (11, T3, Th), (T2, T3, Tig), (13, T3, Thg), (T2, Ty, The),
(Th, Ths, Thg), (Tha, Tus, Thg), (11, The, The), (13, Trg, Thg), (11,114, Tho),
(T1, Ths, Too), (Tha, T1s, Too) and (T4, Too, Too), seven times each.

o~ —

(
(
(
(

Note that some of these contain successive copies of the same subgroup 7j. In fact
it is easy to see that when ¢ > 3 (and m is divisible by 2401), some subgroups can be
made up of layers that include multiple copies of two or more of the T}; for example,
when 0 < u < v < £, the G-invariant subgroup of K/K (™ generated by the images
of zy, (2x2)™ and {(w;)™ : 1 < i < 8} may be viewed as a tower of u copies of T}
sitting on top of ¢ — u copies of T;.

Inspection of the generating sets shows, however, that a tower of more than one
copy of T; and a tower of more than one copy of T} can occur for ¢ < j only when
(E,,_Tj) = (Tl,Tg), (TQ,Tg), (T17T20), (TQ,Tlg), <T187T19> or (Tlg,Tgo). For example,
we cannot have a tower of two copies of T} on top of a tower of copies of Tz or Tiy,
or a tower of two copies of T, on top of a tower of copies of Tig or Ty, or a tower of
two copies of T3 on top of a tower of copies of Tig, Tig or Tay.

Similarly, we cannot have a tower of two copies of 77 on top of a single copy of
T3 on top of a tower of copies of Tig or Tig, for example. On the other hand, there
are some cases where we can have a single copy of another T; in between (or above
or below) towers of copies of 7; and Tj (for i # j), such as a tower of copies of 7T} on
top of a single copy of Tig on top of a tower of copies of Tig.

Finally, it is not difficult to see that there is no G-invariant subgroup of K /K™
for m = 2401 (and hence for any higher power of 7) which has four distinct layers
of rank 1 to 7; in other words, when m = 7¢ for £ > 3, the quotient K /K™ must
always have a layer of rank 0 or 8, or a repeated layer.

These observations allow us to find all possibilities for a Gi-invariant subgroup
of K of 7-power index, classified according to their layer sequences. The results are
given in Table 5.1 in the next Section, and can be confirmed to some extent with the
help of MAGMA.
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5 Summary

Putting the results of Sections 3 and 4 together, we find that the only possibilities
for a normal subgroup L of G contained in K with index |K : L| being a power of a
prime k are those included in the summary table below (Table 5.1).

Each row of this table describes a class of such subgroups, and for ease of reference,
the jth class is denoted in the left-most column by the symbol of the form ‘jg” where
S is a single parameter or sequence of parameters, sometimes with an asterisk added.
The parameters b, c and d are powers of k, and unless otherwise indicated, we will
take b = k', c = k%, d = k%, and e = k™. If the asterisk appears, then there are exactly
seven subgroups of that type with the given parameters, while if it does not, then
there is just one such subgroup. The second column gives conditions on the prime &
and the other parameters. The third column gives a description of the subgroup(s)
in the class; when k # 7 this is an explicit generating set for L, but when k£ = 7,
we indicate the layers of L from the top down, by a sequence of T}’s (for various j)
followed by a term K, (for K(™) = K(®) where e = 7% is the exponent of K/L.
Again we use VU) to denote the set {v7,vy7, v37,v47, 057,067} of jth powers of the
generators of V. Finally, the fourth column gives the structure of the quotient K/ L.

For notational convenience, we use the symbol f T; to indicate a subsequence
T;,. 1., T; of f successive copies of the subgroup 7. Hence, for example, the sequence
(*Ty, Thg, K3) denotes a subgroup L such that K/L has exponent 7° = 343, with
Ly = K3 = K(73), and for this subgroup, L/Lj is a a copy of Tig extended by a tower
of two copies of Ty (as in the first of the rank 7 subgroups listed for the case m = 343
in the previous section). Since T, and Tj9 have ranks 1 and 7, for this example we

have quotient K/L 2 (Zzas/313)" @ (Z3az/7)® ® Zsaz1 = (Lag)® @ Lsas.

Explicit generating sets for all these cases can be found in the second author’s
PhD thesis.

Type Conditions Description of L Quotient K/L
Lic.a) k#7 (uf,ug, V@) (Z.)? © (Z4)°
20ca) | F=1mod 3; kK #7;b#c (22, 2,8, V) Zoy @7 ® (Zq)°
3(ca) k=3 ((uyug)e, ude, VD) Le® Lse ® (Za)®
4, k=17 (“Tp, K,) (Z.)®

Bd.e) =T;d<e (VTy, " Ty, Ky) Zaq® (Ze)"
6(de) k=Td<e (VTy, " Ty, K,) Za® (Ze)"
Tiede) k=T c<d<e (T, =Ty, Ty, Ky) | Ze ® Zg ® (Ze)®
8(c.de) k=T,c<d<e (“T, v "Ty, v T3, Ky) | Ze ® Zg @ (Z,)°
9Yde) k=T d<¢ (To, "', T, Ku) | Za® Ze ® (Z)°
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10(qe) —T;d<e (*Ty, Ty, K, (Z4)* ® (Z.)°

11, k=T e>1 (v 1Ty, Ty, Ky) (Ze)? @ (Ze)®
2ae) | k=Trc<d<&| (“To," "1, ' T3, T5, Ku) | Ze ® Zy @ Le @ (Ze)°
Bae | k=Tc<d<&| (“To, T, ' T3, T5, Ku) | Ze ® Ly ® Le  (Ze)°

144, k=7 d< (“To, 1T, Ty, Ky) Zq® (Z ) ® (Z.)°
15(d,e) k=7 d< ("To, ="y, Ts, Ko) Za® (L) ® (Ze)
1640 k=7 d< ("Ty, =V, Ty, K Zq® (Ze)?* @ (Ze)
17(a.0) k=7 d< ("Ty, VT3, Ty, Ky (Zq)? & Ze @ (Ze)®

18, k=T e>1 (v, Ty, Ky (Ze)® @© (Ze)®

19, k=T e>1 (v, Ts, Ku) (Ze)? @ (Z.)°
Wieae) | k=Tic<d<g| ("To," Ty, 13, Tr, Ky) | Ze ® Zq® (Ze)* & (Ze)"*
ieae) | kF=Trc<d< | ("To," T, T3, T5, Ky) | Ze @ Za @ (Ze)* & (Ze)*

22(4.0) k=7 d< (*Ty, =V, Ty, Ky Zq® (Zg)® & (Ze)
23(d.) k=7 d< (*Ty, =Ty, Ty, Ky Zq® (Ze)® & (Ze)
24(4.0) k=7 d< (*Ty, =V, Tk, Ky Za® (Ze)® & (Ze)!
25(d.) k=7 d< (*Ty, =V, Tk, Ky (Za)* ® (Ze)* @ (Ze)"*

26, k=T e>1 (v 1Ty, Tr, Ky) (Ze)* @ (Ze)*

27, k=T e>1 (v 1Ty, Ts, Ky) (Ze)* @ (Z.)*
Weae) | k=T c<d<g| (“To, T, " "' Ts, Ty, Ky) | Ze ® Za® (Ze)* ® (Zc)?
cae) | k=T c<d <& | (“To, " "To, " ' Ts, Ty, Ky) | Ze ® Za ® (Ze)* ® (Zc)?

30(,e) k=T d<¢ (*Ty, =V, Ty, Ky Zq® (Ze)* & (Ze)?
31 (.0 k=T d< ¢ (*Ty, =Ty, T, Ky) Zy® (Ze)* & (Ze)?
32(d.0) k=T d<¢ (*Tp, "=y, Ty, Ky) Za® (Ze)* @ (Ze)?
33(d.e) k=T d< ¢ ("Tp, =Ty, Ty, Kyp) Zy® (Ze)* @ (Zc)®
34(de) k=T d<¢ (VTy, "M, Ths, Koy) Za® (L)' @ (Z.)?
35(de) k=T d<¢ (VTy, "M, T, Koy) Zq® (L)' @ (Z.)?
36(d.c) k=T d< £ (*To, »~v Ty, Ths, Kyp) Zq® (Zg)' & (Ze)*
37(d.e) k=T d< £ (*To, »~v Ty, Thg, Ky) Zq® (Zg)' & (Ze)*
3Bue' | k=T d<g ("Ty, ="y, Ty, Ko) Za® (Ze)' @ (Zc)°
39 | k=Tid<g (*Ty, = *"'Ty, Ty, Ko (Za)? @ (Ze)? @ (Ze)?
40, k=T e>1 (v=1Ty, Ty, Ky) (Ze)® @ (Ze)?
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41, k=T e>1 (“"1Ty, Tho, Kop) (Ze)® @ (Ze)?
42, k=T e>1 (“1Ty, Thy, Koy) (Ze)® ® (Ze)?
43, k=T e>1 (“"1Ty, Tha, Kop) (Ze)® ® (Ze)?
44, k=T, e>1 (“1Ty, Ths, Kop) (Z2)® ® (Ze)?
45, k=T,e>1 (v, Tig, Ko (Z2)® ® (Ze)?
46, k=T e>1 (v 1Ty, Tis, Ku) (Ze)® @ (Z.)°
47, k=T.e>1 (v, Tyg, Kou) (Z2)® ® (Ze)?
Begey | k=Trc<d< g | (“To, Ty, T3, Thg, Ku) | Ze ® Zg ® (Z2)* ® (Ze)?
DOeae) | k=Tre<d<g | (“To," "y, """ T3, Tz, Ky) | Ze ® Zg ® (Ze)* & (Ze)?
50(d.e) k=T d<% (" Ty, =Ty, Tz, K Za® (Ze)® ® (Ze)?
51(d.e) k=Td<g (" Ty, =Ty, Tz, K Zq® (Zs)® & (Z)?
52(d,e)* k=T d<g (" Ty, =Ty, Tig, K Zq® (Zg)® & (Ze)*
53(d.e)* k=Td< % (" Ty, Ty, “ " Ts, K Zq® (Zrq)® ® (Ze)?
54(de) k=T d<z ("To, ="', Thz, Ky) (Za)* @ (Z2)* @ (Z)?
55(d.c) k=T d<% (" Ty, Ty, =" T, K (Z4)? ® (Z7g)* @ (Z.)?
56(d.c) k=T d<% (" Ty, T, T, K (Z4)? & (Z7q)® & (Z.)?
57(d,e) k=T d<z2 ("I, T, =T, Koy) (Zg)* ® (Zrq)* ® (Z.)?
58(d,e)" k=T d<g ("Tp, Tya, "0 Tig, Ky (Zg)® & Zrg @ (Z)?
59, k=T e>1 (“"1Ty, Thr, Kyp) (Z:)° @ (Z.)?
60(d.e) k=T.d<e (*Ty, " Tig, Ky) (Z4)5 @ (26)2
6licae)” | k=Trc<d <& | (“To, Ty, " Ty, Tho, Ky) | Ze® Zg® (Ze)® &
620cde) | k=T c<d<£ | (“To," Ty, " T5,Ti9, Ky) | Ze®Zg® (Ze)® @
63(cae) | k=Tie<d< g | (“To, T, Ty, " To0, Ky) | Ze ® Za ® (Z7a)° @
6d(cae) | k=Tic<d< g | (“To,""To, T3, Tig, Ky) | Ze ® Za® (Z7a)® &
65(cae) | k=Tic<d< g | (“To, " "T1, Ts, " " To0, Ku) | Ze ® (Za)?* & (Z7a)* &
66(cae) | k=Tic<d< g | (“To, Ty, Ts, T, K,) (Z4)* @ (Zrg)* @
67(cae) | k=Trc<d< g | (“To," T, Ts, " " Too, Ko (Z4)? & (Z74)® ®
68(cae) | k=Tic<d< g | (“To, "Iy, Ty, " Thg, K,) (Z4)® @ (Zrq)® ®
69(cae) | k=T c<d <& | (“To, Ty, Tia, """ 10, Ku) | Ze ® (Zg)* ® (Zrg)* &
0ae) | k=Tc<d< g | ("To," Ty, Ty, T, Ku) | Ze ® (Zg)* ® (Zrq)* ® Ze
Neae) | k=T Te<d<e| (“To, T1, " " Tig, “ " Tio, Ku) | Ze ® (Z7)° ® Za ® Ze
26de) | k=T Te<d <e| (“To, Th, " " Tig, " Too, Ku) | Ze ® (Z70)° ® Za ® Ze
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MBede) | k=TTc<d <z (T, " 7uTy, Tig, U Ty, Ky) | Ze ® (Zg)® ® Zigg ® Ze
Tede) | k=T c<d<z (T, "= uTy, Ty7, = g, Ky) | Ze ® (Zg)® ® Zigg ® Ze
75(d,e)" k=17 d<:% (vTo, ==y, Thg, Ky) Ly P (Z;)ﬁ b Ze
T0(cde) | E=Tc<d<e (“To, "~ T, Ty, Ky) Z.® (Z4)° ® Z.
TTede)y | E=Tc<d<e (“To, "~ Ty, " Thg, Ky) Ze ® (Zq)® & Ze
T8(d,e)" k=17 d< g (vTo, Ty, =" 1Ty, Ky) Zg® (Z7q)® @ Ze
79de)" k=Td<¢ (VTy, v~ T3, Thg, Ky) (Za)* ® (Z2)° ® L
80(d,e)” k=17 d< 4 (vTy, Ts, =" 1Ty, K,) (Z4)* ® (Z7g)> ® Z,
81(a,e) k=17 d<z% (VTy, Ty, =" 1Ty, Ky) (Z4)* ® (Z7q)> ® Z,
82(de) k=17 d<z (VTo, Ty, = 1Ty, Ky) (Z4)? ® (Z7q)> ® Z,
83(cde) | k=T Tc<d <e | (T, Ty, VUl T g, Ky) | (Z6)? © (Zge)* @ Zg ® Ze
84(cde) | k=T Te<d<e | ("To,Ty," " Tis, " T2, Ku) | (Zo)* ® (Zre)* ® Ly ® Ze
89(d,e) k=T d<z% (vTo, T, v~V Ty, Ky) (Z4)? ® (Zrg)* ® Z,
86(d,e) k=17 d<z% (vTo, Ts, =" Ty, Ky) (Z4)? ® (Zrg)* ® Z,
87(de) k=17 d<z% (vTo, Ts, =" Ty, Ky) (Z4)? ® (Zng)* ® Z,
88(cde) | k=T Tc<d<e | ("To,Ts, el e g, Ky | (Ze)2 @ (Ze)® ® Zg @ Ze
89 cde) | k=T Tc<d<e | ("To,Ts, Vel e T, Ky | (Z6)2 @ (Zige)® ® Zg @ Ze
90(a,e) k=17 d<z% (“To, Ty, =" Ty, Ky) (Zg)* ® (Z749)® ® Ze
9(a,e) k=7 d<:2 (vTo, Ty, =" T, Ky) (Z3)* ® (Zrg)® & Z.
92(a,e) k=7 d<:% (vTo, Ty, =" Ty, Kyp) (Zy)* ® (Zrg)® & Ze
Bede | k=T Tc<d<e | ("Tp,Ts, U T T g, Ky) | (Ze)* © (Zge)* @ Zg B Ze
Mcae | k=T Tc<d<e | ("Tp,Ts, U T 0Ty, Ky) | (Ze)* © (Zge)? @ Zg B Ze
95(d,e) k=17 d<:% (VTy, Ty, =" 1Ty, Ky) (Z4)° ® (Z7q)? ® Z,
96(a,e) k=17 d<:% ("To, Tho, ="' Thg, Kop) (Za)® ® (Zra)* ® Ze
97 (d,e) k=17 d<z% ("To, Ty1, " Ty, Ky) (Za)® ® (Z74)* ® Ze
98(d.e) k=17 d<z% ("I, Tha, " 1 Thg, Kyp) (Za)? ® (Zra)* ® Ze
99(d,e) k=7 d<z% ("To, Thg, ="' Thg, Ky) (Z4)° ® (Z74)* ® Ze
100(4,e) k=7 d<z2 (“To, Ty, V" 1T, Ky) (Z4)® ® (Z7q)? ® Z,
101 (4.¢) k=7 d<z% (“To, Tis, V01T, Ky) (Z4q)° & (Z74)? & Ze
102(4.¢) k=17 d<z% (“To, Tie, V"1 Th9, Ky) (Z4q)° & (Z74)? & Ze
103(g,e)" =T, d<:% (“To, Ty, V0 1Ty, Ky) (Zq)° ® (Z74)? & Ze
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104(ae) | k=T;Tc<d <e | (“Ty, Tia, " " Tis, " "Tig, Ku) | (Ze)? & Zige & g & Z,
105(a0) | k=T;Tc<d<e | (“Ty, Tia, " " Tis, " To, Ku) | (Ze)® & Zige & g & Z,
106(4,0) k=Td< ¢ (“Ty, Tyz, "=\ Thg, K,) (Z4)6 @ Zrg @ Z.
107ae | k=T;c<d<e (“Tp, > Tis, “*Tig, Kp) (Zo)® & Zy & Z,
108ae) | k=T;c<d<e (“Tp, >~ Tys, “~*Tho, Kp) (Zo)S & Zg & Z,
1094.0) k=T d<e ("Ty, *~T1g, K,p) (Za)" ® Z.
110(4.0) k=T d<e (" Ty, *~Tho, K,p) (Zg)" @ Z.

Table 5.1: Possibilities for G1-invariant subgroup L of K when G1/K = C7 x3 Cg
[Note: b=k, c=k", d=k" and e = k¥ (with ¢,u,v,w > 0) in all relevant cases]

6 Additional automorphisms

In this section, we find out which of the regular covers obtainable from G-invariant
subgroups of finite prime-power index in K = N/N’ admit a larger group of auto-
morphisms than the lift of the group G;/N = C7 x5 Cs.

First, we note that none of these regular covers can be 5-arc-transitive, since the
Heawood graph itself is not 5-arc-transitive (and in particular, the subgroup N is not
normal in the group Gj).

The next possibility we check is that the cover is 4-arc-transitive. To do this, we
consider whether or not the Gj-invariant subgroup L is G j-invariant, which we can
do by checking whether L is normalised by the additional generator p of G}. If it is,
then each layer of L must also be normalised by p, since the subgroups K; = K K
of K are characteristic in K. For this reason, we begin by determining which of the
G1-invariant subgroups of K /K®) are normalised by p. Recall that p conjugates w;
to w; whenever j = ¢+ 4 mod 8.

Now for every prime k, it is easy to see that the rank 2 subgroup U generated by
Uy = wlwgwglwglw;l and uy = w2w4w5_1w6_1w7_1w8 is not G’j—invariant, since u? =
wy twy twy wswy, which does not lie in U. Also the rank 6 subgroup V generated by
V] = Wi, Vg = w2w7_1, Vg = Ws, Vg = w4w8_1, Vg = w5w7_1 and vg = wﬁw;lwg is not
G j-invariant, since v;? = ws, which does not lie in V. Similarly, when k¥ = 1 mod 3
and t is a primitive cube root of 1 mod k, the rank 1 subgroup of K/K (k) generated
by 2z = wywiwswiw! wl wlw! is not G l-invariant, because z? is not expressible as
a power of z;. On the other hand, when k£ = 3, the rank 1 subgroup generated by
21 = WWawswawswewswsg (or by ujug) is G41—ilmfauriamt7 since z; is centralized by p.
But this does not extend to a rank 1 subgroup of K/K ™ when m is a higher power
of 3, since K/K® has no cyclic Gi-invariant subgroup of order greater than 3.

It follows that for k& # 7, the only G;-invariant subgroups of k-power index in K
that are also Gj-invariant are the rank 8 subgroups K™ themselves, with covering
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group K/K™) = (7Z,,)%, for m = k* (for any such k), and the subgroups generated
by the images of (ujug)3 and all w!™, with covering group Zm © (Zy)", when m = 3¢
for some £ > 0. These are the subgroups of types 1(;, ;) and 3z ) in Table 5.1.

In the case k = 7, again we let A be a primitive cube root of 1 mod m, where
m = 7% is the exponent of the covering group K /L, chosen such that A\ = 2 mod 7 and
A? = 4 mod 7. For notational convenience, we will write  ~ y when the elements
x and y have the same image in the top layer K/K(™ of K, so that (for example)
2y =~ wiwiwswiwiwiwiwd. The effect of conjugation by p on the generators z; to
xg defined in Section 4 can now be given as follows:

71 ~ wywiwzwiwiwiwiwd —  wlwiwiwiwswiwrwd ~ virivSyirdrg

40 an40120,02,,,2,,,4 2,002,024, 4oy a4 A 22, .6

12

T~ WeWrWs wowswy ~ riririvirieie

Ty =~ w6w76w8 U)Q’LU??U)4 ~ ZIZ?J]QIE?ZE5IGZE7BJZ§)

Ty ~ wywgwzwiwiwiwiwg —  wiwiwiwiwswiwrwg ~ rivsrdrsriries
T3 ~ wywzw Fwswiws o W WEWIWeWWE = ToT T LT
T4 2 WzwEWIwe = wywiwiwr ~ riryriyded
T5 ~ wawdSwiwd = wiwiwiwg ~ xdrzwd
s 5~ 5 2,5
—
—

[§ 5,36

Ty =~ Wrwg wswy ~ wirexdrirSrerin?.

Note that the images of x{ and 22 both lie outside the image of the subgroup gen-
erated by x1, x9, x3, x4 and x5, and so it follows from the definition of the G;-invariant
subgroups of K/K (in Table 4.1) that none of the subgroups T} to Ty of K/K
is normalised by p. Similarly, none of the subgroups Tio, T11, T13, T14, 115, T16, 118 and
Ty is normalised by p, since each contains the image of x3 but not the image of z?,
and the subgroups T}7 and Ti9 are not normalised by p, since they contain the image
of x5 but not the image of z3 (and contain the image of xg but not the image of z¥).

On the other hand, the subgroup 7} is normalised by p, because

P~ 2:2,.6 6 ~ 2.6 62
5,44 5
vy ~ vowduted ~ xdvi(xizg)?,

5 5.6 2.5 6
Ty~ xl%%%% = xl%% (%936) )

~ 3
¥ ~zlrsx?, and

2. \p 5,.6,.6,.2 .23 5,.6,.2,.2(,.2,. \3
(x5x6)P ~ xPxyryrjeind ~ vPxyrirs(rsre)’.

Thus T}, is the only non-trivial proper Gi-invariant subgroup of K/K( nor-
malised by p. Furthermore, since there are no Gi-invariant subgroups of K/K®)
with 715 as both layers, this subgroup can occur in at most one layer of L.

Hence we find that the only Gi-invariant subgroups of 7-power index in K that
are also G }-invariant are the subgroups K™ with covering group K/K™ 2 (Z,,)8,
with m = 7° for £ > 0, plus one subgroup with covering group (Zm)® @ (Z,,)* where
m = T¢, for each ¢ > 0. These are the subgroups of types 4,, and 43,, in Table 5.1.

Next, we consider the possibility that the G;-invariant subgroup L of K is also
G, -invariant. Of course this is not very likely to happen, since the Heawood graph
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has no 2-arc-regular group of automorphisms (and in particular, the subgroup K of
G/N' itself is not G,-invariant), but remarkably, it does happen.

The group G4 can be obtained as an extension of G by adjoining the involutory
automorphism 6 of G that takes h and a to h™! and a~! (= a), respectively. This
is like a reflection, and takes w; = (ha)® to (h™'a)® = ws, and vice versa, but

: 0 _
takes each of wq, wy, ws, we, w7, ws to an element outside of K. (For example, wg =

(h~*ah~*ahahah~'aha)’ = hahah~‘ah~‘ahah™'a = wesw;'h~*aha, which does not
lie in K, for otherwise K would contain [h,a] = h™'aha.)

In particular, 6 does not preserve K, but takes K to another subgroup of index
42 in G, with intersection J = K N K? having index 7 in K (and index 294 in G). In
fact J = K N K% is generated by the eight elements v; = wy, vy = w2w7_1, U3 = Ws,
vy = Wawg T, vs = wsws ', vg = wew; ‘ws, y2 = wy wg and wy , with:

v! = wf! = ((ha)®)? = (h"1a)® = w3 = v3,

U36 = ’UJ39:U}1:U1,
vd = (wow;')? = (W 'wsh)? = hw h™' = wywy ' = (wow; ')t = vy !,
vf = (wawg)?(h~tah twshah)? = hahwh™tah™' = wswg 'wswg '

= wy(wsw; ) (wew; 'wg) Tt = vzvsvg L,

vd = (wsw;')? = (hah~'ahah~'ah~'ah~'ah~'ahah~'ah~'ah)’
= h~'ahah~'ahahahahah™'ahahah™" = wyw; 'wsws; "
= wi (wowy ") N (wywg ) (wews 'wg) = vy vy ugug,

v = (wsw;'ws)? = (hahah~*ahahahah™'ahahahah~'aha)’

= h~tah~'ahah™‘ah~*ah~'ahah™‘ah~tah~'ahah™'a

= wews 'wiwy 'wy = wi(wawg )TN (wswy ) = vy g
ys = (wr wg)’
(h~Yahahah~'ahah~‘ah~‘ah~'ahahah~*ahah~*ah~‘ahahah~'aha)’
hah~*ah~'ahah™'ahahahah™'ah~'ahah™*ahahah™tah~'ahah™'a
wywy wswy wr = (wawr ) wy (wyws )~ wswr ) (wewd)” wy
= vpvy vy us Y wg

(wh)? = ((h~tahahahtahah~'a)")? = (hah~‘ah~tahah~'aha)”
w2w3—1w4w1_1w5w7w§1w8w1—1w2w4w1—1w6w3_1w8
wi P wiws *wiwswewrw?
= wi(wawy )Pws® (wawg ) (wswr ') (wewy ws) (wrwg) wy
= vy w3vs wivsve g (wg)
(wd)? = ((h~tah~tahahah™taha)")? = (hahah~tah~tahah='a)”
= wﬁwg1w7w2_1w5w1_1w6w5w8_1w7w1_1w6w3_1w5w;1w7
= Wy twy wy wy wiwgwiwg !
= wi(wawy ) wg (wawg ) (wswr ) (wews Mws ) (wrwg)Pwg

-2 -1 -2 1.3 3 8/ 7\—3
= Uy Uy U3z Uy U5U6?J2(w8) .

7

21
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It follows that J = K N K? contains V, and w,” for all i, as well as y = wywg (which
is the product of yo = wywd and a power of wy ), whenever m is a power of 7 and \ is
a primitive cube root of 1 mod m with A = 2 mod 7. On the other hand, J contains
neither u; = wywsw; 'wg 'w, ! nor uy = wowyws 'wg 'wy 'wg (from Section 3), but J
does contain each of u{, uJ and uju? = y,.

It is also easy to see that this subgroup J is Gi-invariant, by checking the images
of V, yo and wy under conjugation by h and a. But in fact K itself is G;-invariant,
because (K?)" = Ko = M0 = K% and (K%)* = K% = K% = K° and it follows
directly from this that J = K N K? is G-invariant. Similarly, J is f-invariant, since
(KNK%Y=K'NnK=KnK?.

We may view the ‘top layer’ of J as a copy of the rank 7 subgroup Tyg of K /K
with every subsequent layer of J being isomorphic to (Z;)® (generated by the images
of the appropriate powers of all the w;).

Now let L be any G;-invariant subgroup of finite prime-power index in K, such
that L? lies in K. Then also L? is G-invariant, by the same argument as used for K
a few lines above. Also L? lies in K?, so lies in K N K? = J as well. In particular, the
index |K : L| must be a multiple of ]K :J| = 7. Hence we may restrict our attention
to the case of characteristic 7, and the subgroups we found in Section 4.

Next, consider the commutator ¢;; = [w;, w;] = w; le_lwiwj of any two of the

generators w; and w; of K. Since these two elements commute in K, and L? lies in
K, we know that L? (trivially) contains c;;, and it follows that L must contain the
f-image c , for all such 7 and j.

These Commutators are easily computed. For example,

15 = (w!) " (w))wiwy

= (ah)%(ah™ 1ahahah Yah~ lah)(ff1 )6 (hilahahahflahflaha)
(ah)Sah~tahahah=tahah™'ah~tah~tah~*ah~'ahahah~'ah~'aha

= (ah)®(ah~tahahah™tahah=')(ah=1)hah~tahah~tah~taha

-1, -1, -1 -1, -1 _ ,-1,-1

All such #-images c are given below:

0 _ -1 -1 ~1. -1
Clg = Wy Wy =1V Vg,
0 _ -1, - _
Ci3 = W3 W w3w1 =1,

0 __ -1, -1 -1 -1 _ .1, -1

0 __ -1, -1, -1 _ -1, -1

06 _ -1 -1 -1, _ -1

0 __ -1, .—1 -1,,,—1 -1 -1 -1

0 __ -1, -1 -1 -1 _ .1, -1

9 _ -1 -1 ~1 _ 2,11
Coy = Wy WIW, WrWg WsW = ViV, Vg ,
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02?1 = w5_lwlw;1w4wf1w6w3—1w8w;1w6 = vl_lvglmvglvg,
c2§ = wglw1w§1w4w1—1w2 = ’U2U4’U5_1,

cod = wi wiw) wrwy fwsw) M wws g = 1,

CQQ = wglwlw;1w§1w4wflw6wglw8 = U§2vglvﬁ,

022 = w5_1w1w5_1w2w7_1w4w1_1w6w3_1w8w4_1w7 = U2U3_1U5_2'Uﬁ,
) = wilwg wiw; wsw we = vy vy

et = witwy ' wewy M waw  we = vy vy,

el = witwy wrwy wswg M wswg T wawy fwy = vy vsvsug
cgf = witwg wywr waw wews Mws = g o4,

032 = wflw;1w8w11w7 = vflvf,

c4§ = wglwlwglwlw;1w7wflw2 = vlvw;lvglvgl,

G = Wg wiwg Wewy Wawy Wy = V10aV5 Uy,

¢ = wgwiwg ' wswy wewy ws = 1,

el = wgtwiwg fwrws fwswy oy = vy oy g

s = wy ' wiwy wewy 'wswaws twy = vivy s,

c5§ = w;lwlwglwglwgwl’lwﬁwglwg = v;lvg%;l%,

Csy = Wy WiW; Wawy wawy wswy wr = 1,

06(; = w4_1w7w2_1w1w4_1wgwglwgw;1w4wl_1w6w§1w8 = vglvjlvglvﬁ,
ch = w4_1w7w2_1w6_1w8w4_1w7 = v2_1114_2v6_1,

072 = wglwgwglwlwg1w2w§1w8w21w7 = vlvgvljlvglvﬁ’l.

Note that every element in the list above is expressible in terms of the generators
vy to vg of the rank 6 subgroup V of K. In fact, each of them is expressible as a word
in the following ‘base’ elements: vivs, v2v3 ", vV1vy, V1V; U5, V20206 and v, or perhaps
better still, the elements vyvy, vovy ', vsvy ', vsv; 2, vev} and vy,

So now let F' be the subgroup generated by the six elements vivy, vavy ", vsvy ",
vsv; %, vevl and v). Then F contains v/ = (viv4)7v; ", and similarly contains v;, vy,
ve and vy, so F has index 7 in V, with K/F 2 Z ® Z @ Z,. Also it is easy to check
using the conjugacy details given at the beginning of Section 3 that F' is G;-invariant.
Similarly, using the #-images of the elements v;, we can see that F'is preserved by 6.

The first layer of F' is a copy of T4, since the images of the five elements vivy,
vouyt, vavy ', wsvy 2 and vgv) in K/K(7 generate the same subgroup as {1, r3, 74,
Ts5, T4x}, while all subsequent layers are copies of Tig. It follows that F is one of the
seven subgroups of type 587" from Table 5.1, and in fact F' can be generated by
{m28™ w3, 34, 75, (257 76) 2628 UV (). (We leave the reader to prove that the subgroup
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generated by V' does not contain (x,'zg)z™ when i # 4 mod 7.)

Now once again, let L be any Gi-invariant subgroup of finite 7-power index in K,
such that LY lies in K. Then we know that L’ is G;-invariant, and F C L C J. It
follows that the top layer of L is isomorphic to a subgroup of K/K( containing T4
and contained in T}g, and so must be a copy of one of T14, T7, Tig or Tig, while every
subsequent layer of L contains a copy of Tig and hence is a copy of Tig, Tig, Toy or
Ty, = K/KT = (Z;)8 itself.

Conversely, if L is any Gi-invariant subgroup of K such that F C L C J, then
F=rF%CL?CJ%=J, and in particular, also L’ is a G;-invariant subgroup of K.
Moreover, L? has the same index in G; as L, and hence the same index in K as L.

The relevant subgroup types from Table 5.1 are given in Table 6.1 below, with the

asterisks dropped from types 581 ¢)*, 103(1,)*, 104(1 4" and 105(; 4" since there is
just one subgroup containing F' in each of those cases.

Type Conditions Description of L Quotient K /L
45, k=17 (T4, K7) (Z7)°
58(1,@) k= T,e>T (T147w_1T18, Kw) Ly ® (Ze)2
597 k=T (Th7, K7) (Z7)?
60(178) k= 7, e>1 (leg, Kw) (Ze)2
100(1,6) k= 7, e>"7 (T14, wilTlg, Kw) (Z7)2 D Ze
103(176) k= 7, e>"T (T14, wingo, Kw) (Z7>2 D Ze

104(1,d,e) k=T7<d<e <T14, vilTlg, YTV, Kw) L B Ly ® Le
105(1,d,e) k= 7, T<d<e (T14, vilTlg, wivTQo, Kw) Z7 D Zd D Ze

1060, | k=T e>T7 (Tyr, Ty, Koy) Z: ® Ze
107040 | k=T1<d<e| (*Tig," "Tio, Ku) AGYA
108040 | k=T 1<d<e| (*Tig," T, Ku) AGYA
1090 | k=T e>1 (“Ty, Kop) Z.

Table 6.1: Possibilities for GGi-invariant subgroup L of K lying between F' and J
[Note: d = k¥ and e = k" in all relevant cases]

Next, the following is helpful in considering the effect of # on these subgroups.

Proposition 6.1 Let L be any G-invariant subgroup of K such that FF C L C J.

(a) If K/L has exponent m = T° where { > 1, then the (th layer of L° contains the
image of 167 = (vsy?) 7, and hence is a copy of Tyg or Tyy.

(b) If the top two layers of L are copies of Ti4 and Tis, then the top two layers of
LY are copies of Tiy and Ty, or Tis and Tig, according to whether or not the
third layer of L contains a copy of Tyg.
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(¢) If the top two layers of L are copies of T14 and Ty, then the top two layers of LY
are copies of T4 and Tig, or Tiy and Ty, according to whether the third layer
of L has rank 7 or 8.

(d) If the top two layers of L are copies of Ti4 and Ty, then the top two layers of
LY are copies of Ty7 and Tiy.

(e) If the top two layers of L are copies of Ti7 and Ty, then the top two layers of LY
are copies of T4 and Ty, or Tiy and Ty, according to whether the third layer
of L has rank 7 or 8.

(f) If j successive layers of L form a tower of j copies of Tig, where j > 2, then
the corresponding j layers of LY are either a tower of j—1 copies of Tig on top
of a single copy of Tig, or a a tower of j copies of Tig, depending on whether
or not the next layer of L contains a copy of Tag.

(g) If two successive layers of L are copies of Tig and T, then the corresponding
layers of LY are two copies of Tig.

(h) If two successive layers of L are copies of Tis and Ty, then the corresponding
layers of L? are two copies of Tig.

(i) If j is the largest non-negative integer for which j successive layers of L form
a tower of copies of Thg, and j > 2, then the corresponding j layers of L° are a
copy of Tig, followed by a tower of 7 — 2 copies of Toy, and then a copy of To,
unless the first layer of L is a copy of Ti7, in which case the top layer of L? is
a copy of Tia, and the next j layers of LY consist of a tower of j—1 copies of
Ty followed by a copy of To;.

() If j successive layers of L form a tower of j copies of Tsy, where j > 2, then
the corresponding j layers of L? are a tower of j copies of Tyo.

Proof. We will prove just some of this, and leave the rest for the reader. Most of it
follows from observations about the #-images of particular elements considered earlier.
We can use those (and the #-images of yy and (yy2)”) to help us see what happens to
layers of Gj-invariant subgroups of K under the action of 6.

First, suppose K /L has exponent m = 7 where ¢ > 2. Then L° contains the
elements 1)1-7 and hence also the elements vi%, for 1 < i < 6, since these lie in F'. But
also L contains w/" for 1 < j < 8, and therefore L’ must also contain (w;")? = (w!)™

J J
for all such j. Now we know that (wg)? = vy 2v; 'vg 2v; fodvd yd (wd) 3, and it follows

that L? contains (w™)? = (w)?)7 = (v7 %05 o320, Ww3vd) T yo 7 (wi) 3.

Hence the (th layer (L%),_,/(L%), of L contains the image of the subgroup gen-
erated by V{7) U {yQSTm}, or equivalently, by V%) U {y,7}. This is the same as
the image of the subgroup generated by V(%) U {247 }, by observations made a few
paragraphs after Table 4.1, and so is a copy of Th9. Thus the ¢th layer of L? contains

a copy of Tg, which proves part (a).

Now recall that we chose A as a primitive root of 1 mod m, with A = 2 mod 7
(and A\* = 4 mod 7). For m divisible by 49 this means A\ = 30 mod 49, while for m
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divisible by 343 it means A = 324 mod 343, so that A\ = 2 + 7d for some integer d,
with d = 4 mod 7 when ¢ > 1, and d = 46 mod 49 when ¢ > 2. Also \2 = 4 + Te,
where e = 4d + 7d?> = 2 mod 7 when ¢ > 1, and e = 2 mod 49 when ¢ > 2.

By definition, we know that g, = wywg' = wrwd ™ = yy(wy )%, and then similarly,
2
we have yy2 = wywg = wywg ¢ = yowg T C.

Using the f-images of y, and wy we calculated earlier, we find that

uy = (ye(wd)?)” =y ((wg)?)?
= (203 vy ws ywg ") (v *vy Moy g gy (wd) 7)1
=y 2yl 12y ml=dy 143d 3 o 348y ~T-21d.

Note that 34+ 8d = 0 mod 7 (and also —7 — 21d = 0 mod 7), and so the image of
y{ in K/K@ lies in the image of the subgroup V (generated by v to vg).

The analogous property holds for higher powers of these elements, and so if some
layer L;/L;;1 of L is a copy of Tig (of rank 7), then the corresponding layer of L can
be a copy of Tig (of rank 6), depending on what happens with the layers above and
below it.

On the other hand, 3 + 8d = 28 mod 49 while —7 — 21d = 7 = 56 mod 49, and so
the image of y3 g 7214 | in K/Ky = K/K“) is the same as the image of (yow?)?®,
and then since yy» = wywg ¢, this is the same as the image of y#. Hence if a layer
of L is a copy of Tig, then the next layer of L contains not only a copy of Tis but
also the non-trivial image of a power of xg = y,2, and therefore contains a copy of
Ty, so must be a copy of Ty or To.

In fact we have more than that, because

= (vsy ) AN

2d, 1—d),~1-2d, ~1—d, 14+3d, 3d | 3+8d, —7—21d)2
= (vivy U5 )(U1 Uy Vg Uy Vs Vg Yy — Wg )
1-4d, 2-2d, ~2-4d, ~3-2d, 1+6d, 64 , 6+16d, —14—42d
=V Uy U Uy Vs Vg Yo Wg

— (1)1’04)1 4d(v 114 )2 2d(v3v42 4d) 3— 2d(05U4— )1+6d(vev43)6dv4_2_10d
6+16d —14—42d
8 .

Yo
Noting that —2 — 10d, 6 4+ 16d and —14 — 42d are all divisible by 7, we see from this
that the image of z¢ in K/K( lies in the image of the subgroup generated by vy,
vouyt, vavyt, vy ? and v}, namely Ty

Hence if the top layer of L is a copy of Ti7 (which is generated by Ti4 and the
image of x¢), then the top layer of LY can be a copy of Ti4. On the other hand, the
second layer of LY contains a copy of Tig and the image of of (yowd)?®, and hence
contains a copy of T5g, so must be a copy of Toy or Th;.

It follows, for example, that if the top two layers of L are copies of Ti7; and Ty,
then the top layer of L? contains a copy of Ti4 and the second layer contains a copy
of Tyy. In fact, since we are assuming that K/L has exponent m = 7°, and Tjy has
rank 7, all of the next £ — 1 layers of L after the first one will be copies of 119, and so
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all of the corresponding layers of LY must contain copies of Thy. Also by (a), the (th
layer of L? contains a copy of Tig as well, and hence must have rank 8. In particular,
|K : L| = |T21 ZT17||T21 IT19|€71 = 7£+1, while |KL9| < |T21 ZT14||T21 ZT20|£72 = 7£+1,
and since we know that |K : L| = |K : L], this forces the top layer of L? to be Ty4 and
all of the next ¢ — 2 layers to be Ty. In particular, this proves part (e). The proof of
part (i) is similar.

Next, rg = yy2 = w7w8)‘2 (= w7w84+7e = y2w82+7e), and therefore
2 2
xd = ((122)7)? = ((wrwd")")’ = (wi)? ((wg)")*
— _ _ _ — _ — _ 2
= (v 3”22U3 3”42U5U6 Ys <w87> Y (v 2”2 1U:s 27’4 IUE?%?’ Ys (w87> 3)/\

0 —3-2)22 222 —3-2)2 2-22 143)\2 14322 548X\%Z/ 7\—1-3)\2
= Uy U Uy Vs Vg Y (wy)

_ (v1v4)_3_2’\2 (02%—1)24\2(1}3%—1)—3—2/\2<U5v4—2>1+3>\2 (vﬁvf’)1+3’\2 Uf—a?
y25+8,\2 <w87)—1—3>\2 )
In this case 3 —5\? = —7 = 0 mod 7 while 5+ 8A? = 37 # 0 mod 7, and so the image
of zf in K/K lies in the subgroup generated by the images of vyvy, vov;*, vsv?,
vsv) 2, vgvi and y,, which is T}y
Hence if some layer of L is copy of Ty (generated by the images of V' and z3),
then the next layer up in L contains a copy of Ti7 and so must be Ti7 or Thy. This
cannot be a copy of Ty, by (a), and moreover, it is a copy of T}7 only if those layers
are the second layer of L and the top layer of L?. In all other cases it is a copy of Tig.
Proofs of parts (d), (h) and (j) follow easily from this, and proofs of the remaining
parts are similar to these and the ones completed above. 0]

The observations in the above propoosition now make it easy to determine all of
the G4 -invariant subgroups of finite prime-power index in K.

For example, if L has type 100 49y, with the first two layers being copies of T4
and Tij9 and all subsequent layers having rank 8, then it follows from part (c) that
L? has the same type, and hence L is preserved by 6. On the other hand, if L has
type 100(; 343), with the first three layers being copies of T4, Ti9 and Tig, and all
subsequent layers having rank 8, then it follows from part (i) that the first three
layers of LY are copies of T4, Ths and Thy, and so L is not preserved by 6.

Thus we obtain the following, which will also be used shortly when we consider
isomorphisms between the covers:

Corollary 6.2 The effect of 6 on the Gi-invariant subgroups of K lying between F
and J 1s as described in Table 6.2.
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Type of L Type of L?
45, 1061 49)
98(1,49) 1001 343)
581,7w), where w > 3 1041, 7w—1 7w+1)
59, 59,
60(1,7) 1091 49)
60(1,7wy, where w > 2 107 (1,701 w1y
100(1,49) 100149
100(1,343) 98(1,49)

100(y 7wy, where w > 4

105(17497711;71)

103(1,7w), where w > 2

1061, 7w+1)

1041 701 7wy, where w > 3

104(17711)—177111)

1041 7w-2 7wy, where w > 4

58(17711)—1)

104170 7wy, where w — 3 > v > 2

105(1’7U+1’7w71)

1051 49,7w, Where w > 3

100(177w+1)

105(1,7v 7wy, where w > v > 2

104(1771/—17771)—0—1)

106(1’49)

45;

106y, 7wy, where w > 3

103(17711;—1)

1071 701 7wy, where w > 2

107(1’7111—17710)

1071 w2 7wy, where w > 3

60(1771071)

107 (1,70 7wy, where w —3 > v > 1

108(177114—17771}—1)

1081,7,7»), where w > 2

109(13711}-{—1)

108(1,7v,7wy, where w > v > 1

107(177’u71’7w+1)

1091 7) 10917
1091 49) 60(1,7)
109(177111), where w 2 3 108(17777“;—1)

Table 6.2: Effect of 6 on the Gi-invariant subgroups from Table 6.1
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In particular, this gives us all of the Gi-invariant subgroups of prime-power index
in K that are also G -invariant:

Corollary 6.3 The G.}-invariant subgroups of finite prime-power index in K are the

following, from Table 6.1:

the subgroup of type 1091 7y, which is J, with quotient K/L = Zz,

the subgroup of type 597, generated by F U {zy2}, with quotient KL = (Z;)?,

the subgroup of type 100(1 49y, with quotient K /L = (Z7)* ® Zyg,

the subgroup of type 107 7e-1 70y, with quotient K/L = Zge-1 @ Zne,

for each £ > 2,

e one of the subgroups of type 104 7e—1 70y, with quotient K/L = Zg @ Zge—r @ ZLre,
for each ¢ > 3.

Note that none of these subgroups has top layer isomorphic to T or T, and so
none of them can be G }-invariant, but actually that follows also from the fact that no
finite symmetric cubic graph admits both a 2-arc-regular and a 4-arc-regular group
of automorphisms (see [6, Theorem 3)).

We still need to check for Gi3-invariance, but this is easy:

By [6, Proposition 26] or [5, Proposition 2.3], if the regular cover resulting from
a Gp-invariant subgroup L has a 3-arc-regular group of automorphisms, then it must
also admit a 2-arc-regular group of automorphisms, and so L must come from the
restricted set of G4-invariant possibilities that we found above. On the other hand,
the group G3 can be obtained from G4 by adjoining the involutory automorphism
7 that interchanges h, a and 6 with h, af and 0 (respectively). This automorphism
7 interchanges (ha)? with hah™'a, and (h~'a)? with h~'aha, and hence takes the
element v; = w; = (ha)® to (hah™'a)® = wsw; *hahah, which does not lie in K, let
alone in any subgroup L of K. Similarly, 7 takes vivy = w1w4w§1 to w5wl’1w7’1 =
vy tvs, but the image of this in K /K™ does not lie in the subgroup T14, so 7 does not
preserve any G4-invariant subgroup L with Ty as its top layer. Hence 7 preserves no
G4 -invariant subgroup of finite index, and therefore we have no 3-arc-regular cover.

Finally, we determine isomorphisms between the covering graphs that arise from
the Gi-invariant subgroups we have found.

When the subgroup L is G{-invariant, the cover is 4-arc-regular, and unique up to
isomorphism, since the subgroup K is normal in G} but not in G5. Similarly, when the
subgroup is G -invariant, the cover is 2-arc-regular, and unique up to isomorphism,
since K is normal in G but not in G;.

So now suppose L is Gy-invariant, but not Go- or Gj-invariant. Then the cover
obtained from L will be unique up to isomorphism unless there exists an outer au-
tomorphism of G taking L to another Gi-invariant subgroup of K. Let us suppose
that happens.

The group G is the modular group PSL(2,7Z), and isomorphic to the free product
Cy % C3, so (as is well known) the automorphism group of Gy is the group G,
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generated by G; and the involutory automorphism 6 that inverts the two standard
generators of Gy, and in particular, Gy = PGL(2,Z). Hence we may suppose the
outer automorphism takes L to LY. In particular, since L? lies in K, we find that L
must be one of the subgroups described in Table 6.1, but not one of those that are
preserved by 6.

It follows that if L is a G-invariant subgroup of J containing F' (in which case L
will certainly not be G }-invariant), then either L = LY and the cover is 2-arc-regular,
or L # L but L and LY define the same 1-arc-regular cover of the Heawood graph.
Note, however, that in the latter case, the exponents of K/L and K/L’ are always
different — in fact one of them is always 7 times the other — so we do not have to
take much account of them when enumerating all possibilities for L such that the
covering group K /L has given exponent.

In all other cases, where L does not contain F' or is not contained in J, the cover
is unique up to isomorphism.

7 Main theorem

Thus we have the following, with ‘for each d|m’ and ‘for each d || m’ meaning ‘for
each divisor d of m’ and ‘for each proper divisor d of m’, respectively:

Theorem 7.1 Let m = k' be any power of a prime k, with ¢ > 0. Then the arc-
transitive abelian regular covers of the Heawood graph with covering group of exponent
m are as follows:

(a) If k =2 mod 3, there are exactly 20 + 1 such covers, namely
e one 4-arc-reqular cover with covering group (Z,,)®,

e one l-arc-reqular cover with covering group (Z4)* ® (Z,,)® and one 1-arc-
regular cover with covering group (Z4)® ® (Z,)?, for each d || m.

(b) If k=1 mod 3 and k # 7, there are exactly 3(% + 3( + 1 such covers, namely
e one 4-arc-reqular cover with covering group (Z, )%,
e two 1-arc-reqular covers with covering group Z. ® Zq ® (Z,,)° and one 1-arc-
regular cover with covering group (Z.)® ® Zq ® Z,,, for each ordered pair (c,d)

of distinct divisors of m.

(c) If k =3, there are exactly 40 + 1 such covers, namely
e two 4-arc-reqular covers, with covering groups (Z,,)® and Zm & (Z)7,
e one l-arc-regular cover with covering group Zg ® Zsq ® (Zy,)® for each d|| %,

e one 1-arc-reqular cover with covering group (Zq)* ® (Z.,)%, one 1-arc-regular
cover with covering group (Z4)® ® (Z,,)?, and one 1-arc-reqular cover with cov-
ering group (Zq)® © Zn © Lp, for each d||m.

(d) If k =7 and £ > 3, there are exactly 540 — 540 + 14 such covers, namely
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o two 4-arc-regular covers, with covering groups (Zy,)® and (Zm)> © (Zy,)*,

e two 2-arc-regular covers, with covering groups Zg ® L ® Ly, and Lm & Ly,
e two 1-arc-regular covers with covering group Zq ® (Z,,)", for each d|| m,

o three 1-arc-regular covers with covering group Z®Zm ®(Zy,)°, for each d|| 2,
e two 1-arc-regular covers with covering group Z. ® Zq ® (Z,,)®, for each pair
{c,d} of distinct divisors of 75,

o two 1-arc-reqular covers with covering group (Zm)* © (Zy,)°,

e one l-arc-regular cover with covering group (Zq)* & (Zy,)®, for each d|| %,

e two 1-arc-reqular covers with covering group Z. & Zq & L» & (Z)°, for each
pair {c,d} of distinct divisors of g,

o three 1-arc-regular covers with covering group Zq © (Zm)?* ® (Zy,)°, for each
|| %7,

e one l-arc-reqular cover with covering group (Z4)* & Lz & (Zy,)?, for each
| 7,

e two l-arc-reqular covers with covering group (Z%)?’ ® (Z,)°,

o two 1-arc-reqular covers with covering group Z. ® Zq © (Zn)*> (Zy)*, for
each pair {c,d} of distinct divisors of Ig,

e three 1-arc-regular covers with covering group Zg ® (Zm )3 ® (Zy)*, for each
a|| 7,

e one 1-arc-reqular cover with covering group (Z4)* ® (Z
df| 7,

e two l-arc-reqular covers with covering group (Z%)4 & (Zn)*,

~[3

2 ® (Zy)*, for each

~3

e fourteen 1-arc-reqular covers with covering group Z.® Zq (Z%)3 & (Zn)?,
for each pair {c,d} of distinct divisors of 5,

e fifteen 1-arc-reqular covers with covering group Zg & (Z%)4 ® (Zp)3, for each
|| 7,

e seven 1-arc-regular covers with covering group (Zq)*® (Zm)* @ (Zy)*, for each
]| %,

e seven 1-arc-regular covers with covering group (Zm)> © (Zy,)?,

e two l-arc-reqular covers with covering group Z. ® Zq ® (Z%)A‘ D (Zp)?, for
each pair {c,d} of distinct divisors of Jg,

e nine l-arc-regular covers with covering group Zq B (Z%)5 & (Z)?, for each
|| 7,

e seven 1-arc-reqular covers with covering group Zg ® (Zzq)® ® (Zm)?, for each
|| 5.

o two 1-arc-regular covers with covering group (Zm)* @ (Zm)* © (Zm)?,
e one l-arc-regular cover with covering group (Z4)* @ (Zm)* © (Z,)?, for each
| 5.

e one 1-arc-reqular cover with covering group (Zq)? ® (Zzq)* ® (Zy)?, for each
|| 5.
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e one l-arc-reqular cover with covering group (Zq)* ® (Z7q)*® ® (Zy)?, for each

df| %,
e one l-arc-reqular cover with covering group (Zq)* & (Z7q)* ® (Zy)?, for each
df

e scven 1-arc-reqular covers with covering group (Zq)® @ Zizq ® (Z,,)?, for each
d|| %%, but with one of these for d =1 having Zr ® L & Lam as an alternative
covering group,

e two l-arc-reqular covers with covering group (Z%)ﬁ ® (Z,)?,

e one 1-arc-regular cover with covering group (Zq)® ® (Zn)?, for each d || 2, but
with the one for d =1 having Zmw & Lz, as an alternative covering group,

e fifteen 1-arc-reqular covers with covering group Zq ® Zm & (Z%)5 D Ly, for
each d|| 5,

e fourteen 1-arc-regular covers with covering group Z. ® Zq (Z%)5 D L, for
each pair {c,d} of distinct divisors of 33z,

e cight 1-arc-regular covers with covering group Ze® Zq ® (Z7q)® ® Ly, for each
pair {c,d} of distinct divisors of 3z,

e two l-arc-reqular covers with covering group Z. ® (Z4)* & (Zrg)* @® Z,n, for
each ordered pair (c,d) of distinct divisors of J5 with ¢ < d,

e two 1-arc-reqular covers with covering group Z. ® (Zq)> ® (Z7q)> ® Ly, for
each ordered pair (c,d) of distinct divisors of 35 with ¢ < d,

e fourteen 1-arc-reqular covers with covering group Ze. ® (Zq)* & (Z1q)?* ® Lo,
for each ordered pair (c,d) of distinct divisors of 35 with ¢ < d,

e fifteen 1-arc-reqular covers with covering group Zd D (Z7q)° & Lagqg ® Ly, for
each d|| 5,

e fourteen 1-arc-reqular covers with covering group Ze ® (Zz.)? ® Zagg ® L, for

each ordered pair (c,d) of distinct divisors of 355 with ¢ < d,

e cight 1-arc-reqular covers with covering group Ze & (Znq)°® & Zaog ® Lo, for
each ordered pair (c,d) of distinct divisors of 35z with ¢ < d,

e nine 1-arc-reqular covers with covering group Zq® (Zg) © L, for each d || %

e nine 1-arc-reqular covers with covering group Zq® (Zrq)® ® Zy,, for each d|| 15
e two 1-arc-regular covers with covering group Z.® (Z4)® ®Z,,, for each ordered
pair (c,d) of distinct divisors of 335 with ¢ < d,

e nine l-arc-reqular covers with covering group (Zq)* & (Z14)° & Zu,, for each
dl| 7

e scven 1-arc-reqular covers with covering group (Zq)* & (Z%)‘E’ @ L, for each
|| 55,

e two l-arc-reqular covers with covering group (Z.)* ® (Z.)* ® Zgq ® Lo, for
each ordered pair (c,d) of distinct divisors of 35 with ¢ < d,

e three 1-arc-reqular covers with covering group (Zq)* ® (Zzq)* ® Z, for each
df| %
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e two 1-arc-reqular covers with covering group (Z.)* ® (Zz.)® ® Zzq ® Ly, for
each ordered pair (c,d) of distinct divisors of 15 with ¢ < d,

e three 1-arc-reqular covers with covering group (Zq)* ® (Zzq)® @® Zp, for each
|| %7,

e two 1-arc-reqular covers with covering group (Z.)* ® (Zz.)? ® Zyq & Ly, for
each ordered pair (c,d) of distinct divisors of 35 with ¢ < d,

o fifteen 1-arc-reqular covers with covering group (Zq)® ® (Zrq)* ® Zy,, for each
d|| %%, but with one of those for d =1 having Z; © Zsy © Lm as an alternative
covering group, and another of those for d = 1 having Z7® Zr,, as an alternative
COVETING Group,

o thirteen 1-arc-reqular covers with covering group Z & Z% D Loy,

e fourteen 1-arc-reqular covers with covering group (Z.)® ® Zie ® Zing ® Lo, for
each ordered pair (c,d) of distinct divisors of 75 with ¢ < d other than (1, J5),
but with one of those for each pair (c,d) with ¢ = 1 having Z; & Lygq ® Lz as
an alternative covering group, and another one of those for each pair (c,d) with
c =1 having Z7 ® Lq ® Zmy as an alternative covering group,

e three 1-arc-regular covers with covering group (Zq)® ® Zaq ® Z, for each

d|| %, but with the three such covers in the case d = 1 having (in some order)

respectively (Zz7)? ® L, Lyg ® Lz and Lzy, as an alternative covering group,
e two 1-arc-reqular covers with covering group (Z.)°® Zzq® L, for each ordered

pair (c,d) of distinct divisors of 35 with ¢ < d other than (1, fz), but with the

two such covers in each case with ¢ = 1 having (in some order) respectively
Laga ® L and Lq ® Lqm, as an alternative covering group,

e one l-arc-reqular cover with covering group Z% D Ly,

e two 1-arc-reqular covers with covering group (Zq)" ® Zy,, for each d||m, but
with one of those for d =1 having Z7 & Zwn as an alternative covering group.

If k=7 and e = 2 (so that m = 49), there are exactly 122 such covers, namely
e two 4-arc-regqular covers, with covering groups (Z49)® and (Zz)> & (Zag)?,
e two 2-arc-regular covers, with covering groups (Z7)* ® Zay and Zy ® Ly,
e two 1-arc-reqular covers with covering group Zq ® (Zyy)",

e two 1-arc-regular covers with covering group (Zsg)”,

e three 1-arc-reqular covers with covering group Zqg ® (Zag)®,

e two 1-arc-reqular covers with covering group (Zz)? & (Zag)®,

e one 1-arc-reqular cover with covering group (Z49)°,

e three 1-arc-reqular covers with covering group (Z7)? & (Z49)®,

e one 1-arc-reqular cover with covering group Zr; @® (Zag)®,

e two 1-arc-reqular covers with covering group (Z7)* @ (Z9)®,

e three 1-arc-reqular covers with covering group (Zz)* & (Zy9)*,

e one 1-arc-reqular cover with covering group (Z7)* @ (Zay)*,

e two 1-arc-regular covers with covering group (Zz)* & (Zag)*,
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e fifteen 1-arc-regular covers with covering group (Z7)* @ (Zg)?,
e scven 1-arc-reqular covers with covering group (Z7)> @& (Zag)?,
e seven 1-arc-regular covers with covering group (Zz)® ® (Zag)?,
e nine 1-arc-reqular covers with covering group (Zz)® & (Z9)?,
e two 1-arc-regular covers with covering group (Zz)* & (Zag)?,

e one 1-arc-reqular cover with covering group (Z7)* & (Z49)?,

e one 1-arc-reqular cover with covering group (Z)* ® (Zsg)?,

e seven l-arc-reqular covers with covering group Zq @® (Zy9)?, but with one of
these having (Z7)? ® Zsyz as an alternative covering group,

e two 1-arc-regqular covers with covering group (Z7)® @ (Z9)?,

e one 1-arc-reqular cover with covering group (Zag)?, but with one of these having
L7 @ L3 as an alternative covering group,

e nine 1-arc-reqular covers with covering group (Zz)® @ Zag,
)° @ Zyg,
three 1-arc-reqular covers with covering group (Zs)* @ Zyg,

e nine l-arc-reqular covers with covering group (Z;

three 1-arc-regular covers with covering group (Z7)? @ Zyg,

e fourteen 1-arc-reqular covers with covering group (Zz)?* @ Zag, but with one of
these having Z7 @ Zssz as an alternative covering group,

e two 1-arc-regular covers with covering group Z; ® Zag, but with one of these
having (Z+) as an alternative covering group, and the other having Zss3 as an
alternative covering group,

e two 1-arc-reqular covers with covering group (Z7)" @® Zygy, and

e two 1-arc-reqular covers with covering group Zag, but with one of these having
(Z7)* as an alternative covering group.

If k=7 and e =1 (so that m =7), there are exactly 21 such covers, namely
e two 4-arc-regular covers, with covering groups (Zz)® and (Z7)3,

e two 2-arc-regqular covers, with covering groups Zy; and (Zz)?,

e two 1-arc-regular covers with covering group (Z7)7,

e two 1-arc-regular covers with covering group (Zr)°,

e two 1-arc-regular covers with covering group (Z7)®,

e two 1-arc-regular covers with covering group (Z7)*,

e seven 1-arc-reqular covers with covering group (Z7)%, but with one of these
having Z7 ® Zasg as an alternative covering group,

e one 1-arc-reqular cover with covering group (Z7)*, but also having Zsg as an
alternative covering group, and

e one l-arc-reqular cover with covering group Z-.
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