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Abstract

A regular map is a symmetric embedding of a graph (or multigraph) on
some closed surface. In this paper we consider the genus spectrum for such
maps on orientable surfaces, with simple underlying graph. It is known that
for some positive integers g, there is no orientably-regular map of genus g for
which both the map and its dual have simple underlying graph, and also that for
some g, there is no such map (with simple underlying graph) that is reflexible.
We show that for over 83% of all positive integers g, there exists at least one
orientably-regular map of genus g with simple underlying graph, and conjecture
that there exists at least one for every positive integer g.

1 Introduction

Regular maps are highly symmetric embeddings of graphs or multigraphs on closed
surfaces. They generalise the Platonic solids (when these are viewed as embeddings
of their 1-skeletons on the sphere) and the regular triangulations, quadrangulations
and hexagonal tilings of the torus, to orientable surfaces of higher genus, and to
non-orientable surfaces as well.

The formal study of regular maps was initiated by Brahana [2] in the 1920s and
continued by Coxeter (see [8]) and others decades later. Deep connections exist
between regular maps and other branches of mathematics, including hyperbolic ge-
ometry, Riemann surfaces and, rather surprisingly, number fields and Galois theory.
See some of the references at the end of this paper for further background.
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Regular maps on the sphere and the torus and other orientable surfaces of small
genus are now quite well understood, but until recently, the situation for surfaces of
higher genus was something of a mystery. A significant step towards answering some
long-standing questions about the genera of orientable surfaces carrying a regular map
having no multiple edges, or an ‘orientably-regular’ map that is chiral (admitting no
reflectional symmetry) was taken by Conder, Siráň and Tucker in [7], after the first
author noticed patterns in computational data about regular maps of small genus
(see [3] and the associated lists of maps available on the first author’s website).

One question of interest has been the genus spectrum of orientably-regular maps
with simple underlying graph — that is, where the embedded graph has no loops or
multiple edges. It is well known that for every g > 0 there exists a reflexible regular
map of type {4g, 4g} on an orientable surface of genus g (with dihedral automorphism
group). It follows that there are no ‘gaps’ in the genus spectrum of orientable surfaces
carrying reflexible regular maps. On the other hand, the underlying graphs for these
maps are highly degenerate, being bouquets of 2g loops based at a single vertex.

A closely-related question concerns the genera of those orientably-regular maps
with the property that the underlying graphs of both the map and its dual are simple.
From the evidence described in [3], it was discovered that there are gaps in this
spectrum: there are no such maps of genus 20, 23, 24, 30, 38, 39, 44, 47, 48, 54, 60,
67, 68, 77, 79, 80, 84, 86, 88 or 95, but there is at least one of genus g for every other
g in the range 0 ≤ g ≤ 101.

Two of the main results of [7] were that (a) If M is an orientably-regular but
chiral map of genus p+ 1, where p is prime, and p− 1 is not divisible by 5 or 8, then
either M or its topological dual M∗ has multiple edges, and (b) if M is a reflexible
regular map of genus p + 1, where p is prime and p > 13, then either M or M∗ has
multiple edges, and if also p ≡ 1 mod 6, then both M and M∗ have multiple edges.

It follows from these that if g = p + 1 for some prime p > 13 such that p − 1 is
not divisible by 5 or 8, then there exists no orientably-regular map of genus g such
that the underlying graphs of both the map and its dual are simple. Hence there are
infinitely many exceptions, well beyond the brief list given two paragraphs above.

On the other hand, if we are happy for just one of M and M∗ to have simple
underlying graph, then the situation is intriguing. The exceptions arising from (b) for
reflexible regular maps are genera of the form g = p+ 1 where p is a prime congruent
to 1 mod 6, but for each of these, there is a an orientably-regular but chiral map
of type {6, 6} of genus g with simple underlying graph. Hence these exceptions for
reflexible maps are not exceptions for chiral maps.

In fact, it is easy to see from the Platonic maps, the toroidal regular maps and
the lists of all regular maps of small genus (associated with [3]) that for every integer
g in the range 0 ≤ g ≤ 101, there exists at least one orientably-regular map of genus
g with simple underlying graph.

Hence the obvious question arises: is there any positive integer g for which there
exists no orientably-regular map of genus g with simple underlying graph?
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We are prepared to conjecture that the answer is ‘No’, but a proof would be
difficult. In this paper, we provide further evidence in support of it, by proving the
existence of several infinite families of examples, covering various pieces of the genus
spectrum.

We construct the maps via their automorphism groups (or at least their orientation-
preserving groups of automorphisms), using a a range of combinatorial group-theoretic
techniques. These include semi-direct product constructions (as used in [5] to produce
regular maps on non-orientable surfaces of over 77% of all possible genera), and some
more general methods similar to those used recently to find abelian regular covers of
symmetric cubic graphs [6].

Some further background on regular maps is given in Section 2, and various infinite
families are described in Section 3, to provide examples that cover over 83% of all
possible genera. Many of the resulting gaps in the genus spectrum can be filled by
maps of type {6, 6}, and some of these are described in Section 4, and then we give
our main theorem and make some concluding remarks in Section 5.

Before proceeding, we note that very little of this work would have been likely
without the benefit of the use of the computational algebra system Magma [1] to
produce examples of small genus and to experiment with a number of constructions
for infinite families.

2 Background on regular maps

A map is a 2-cell embedding of a connected graph X into a closed surface S without
boundary. Note that the graph X can have loops and/or multiple edges. The term
‘2-cell’ means that there are no edge-crossings, and each component (or face) of
the complement S \ X of the graph in the surface is simply connected – that is,
homeomorphic to an open disk in R2.

The map M is called orientable or non-orientable according to whether the carrier
surface is orientable or non-orientable, and the genus and the Euler characteristic of
the map M are defined as the genus and the Euler characteristic of that surface. The
topological dual of an orientable map M (which is denoted by M∗) is obtained from
M by interchanging the roles of vertices and faces in the usual way.

Any such map M is composed of a vertex-set, an edge-set, and the set of its
faces, denoted by V = V (M), E = E(M) and F = F (M), respectively. The Euler
characteristic χ of M is then given by the Euler-Poincaré formula χ = |V |−|E|+ |F |,
and then the genus g of M is given by χ = 2− 2g when M is orientable, or χ = 2− g
when M is non-orientable.

Associated also with any map M is a set of darts, or arcs, which are the incident
vertex-edge pairs (v, e) ∈ V ×E; these can also be viewed as ordered pairs of adjacent
vertices when the underlying graph is simple. Also each dart is associated with two
blades, which consist of the dart (v, e) and a chosen side along the edge e; in the
non-degenerate cases where every edge lies in two faces, these are the incident vertex-
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edge-face triples (v, e, f) ∈ V × E × F .

An automorphism of a map M is any permutation of the edges of the underlying
graph that preserves incidence (and hence preserves the embedding), or equivalently,
any automorphism of the graph induced by a homeomorphism of the carrier surface
to itself. It is important to observe that by connectedness, every automorphism of a
map is uniquely determined by its effect on any blade.

The set of all automorphisms of a map M forms a group under composition, called
the automorphism group of a map, and denoted by Aut(M). If M is orientable, then
the subgroup of all orientation-preserving automorphisms has index 1 or 2 in Aut(M),
and is denoted by Auto(M), and sometimes also called the rotation group of M . If the
orientable map M admits an orientation-reversing automorphism (so that Auto(M)
has index 2 in Aut(M)), then M is said to be reflexible, and otherwise M is chiral .
On the other hand, if M is non-orientable, there is no such distinction.

A map M is called orientably-regular if it is orientable and Auto(M) acts regularly
on the set of all darts of M . If such a map M is reflexible, then Aut(M) acts regularly
on the set of all blades of M . Similarly, a non-orientable map M is called regular if
Aut(M) acts regularly on the set of all blades of M . In general, a map is called regular
if it is either orientably-regular or non-orientable and regular. Just to make it clear:
regular maps fall into three classes: maps that are orientably-regular and reflexible,
maps that are orientably-regular but chiral, and maps that are non-orientable and
regular.

For any regular map M , the action of Aut(M) is transitive on the darts of M ,
and hence on the vertices, on the edges, and on the faces of M . It follows that every
face of a regular map M has the same size, say m, and every vertex has valence,
say k, and then M is said to have type {m, k}. The Platonic solids give the most
famous examples, of types {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube),
{3, 5} (icosahedron) and {5, 3} (dodecahedron), while every regular map on the torus
has type {3, 6}, {4, 4} or {6, 3}. Note that if the regular map M has type {m, k}, then
its dual (obtained by interchanging the roles of vertices and faces) has type {k,m}.

Now suppose M is a regular map of type {m, k}, let (v, e) be any dart of M , and
let f be a face incident with e. Then by transitivity, there exists an automorphism
R of M that preserves f and induces locally a single-step rotation about the centre
of f , and this has order m. Similarly, there exists an automorphism S of M that
fixes v and induces a single-step rotation around v, and this has order k. Moreover,
we can choose each of r and s (either locally ‘clockwise’ or ‘anti-clockwise’) so that
their product rs is an automorphism of order 2 that preserves e and acts locally
like a rotation about the mid-point of e; in particular, r and s satisfy the relations
rm = sk = (rs)2 = 1. By connectedness, r and s generate a dart-transitive group of
automorphisms of M , which must be either Aut(M) itself, or G = Auto(M) in the
case where M is orientable and both r and s preserve orientation.

(The existence of such automorphisms is key to the definition of an alternative
term for regular map, namely rotary map, as coined by Steve Wilson. This has the
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advantage of allowing the term ‘regular’ to be reserved for those rotary maps M with
the property that Aut(M) acts regularly on blades, but recent usage has extended
this term to cover the orientably-regular but chiral maps as well.)

It follows from the above observations that Aut(M) or Auto(M) is a quotient of
the ordinary (2, k,m) triangle group

∆o(2, k,m) = 〈x, y | x2 = yk = (xy)m = 1 〉,

under an epimorphism taking x to rs and y to s−1. Note that the dual M∗ is also
regular, with the roles of r and s (and hence the roles of xy and y−1) interchanged.

If M admits also an (involutory) automorphism a which reverses the edge e but
(unlike rs) preserves each of the two blades associated with (v, e), then the action of
Aut(M) is transitive on blades and so M is either reflexible or non-orientable. Also
in this case ra = r−1 and (rs)a = (rs)−1 = rs, and if we define b = ar and c = bs,
then a, b and c generate Aut(M) and satisfy the relations

a2 = b2 = c2 = (ab)m = (bc)k = (ac)2 = 1,

which are the defining relations for the full (or extended) triangle group ∆(2, k,m).

Note that the automorphism a is may be considered geometrically as a reflection,
about an axis passing through the midpoints of the edge e and the face f . Similarly,
the automorphisms b and c may be considered as a reflection about an axis through
v and the midpoint of f (with rb = r−1 and sb = s−1) and a reflection about an axis
through v and the midpoint of e (with (rs)c = (rs)−1 = rs and sc = s−1).

Conversely, given any epimorphism ψ : ∆o → G from the ordinary (2, k,m) trian-
gle group ∆o = ∆o(2, k,m) onto a finite group G, in which the orders 2, k and m of
the generators x, y and xy are preserved, a map M can be constructed using right
cosets of the images of 〈y〉, 〈x〉 and 〈xy〉 as the vertices, edges and faces of M , respec-
tively, with incidence given by non-empty intersection of cosets. (For example, the
ordered pair (v, e) = (〈yψ〉, 〈xψ〉) is a dart of M , incident with the face f = 〈(xy)ψ〉.)
Also the group G acts naturally and transitively by right multiplication on each of
V (M), E(M) and F (M), preserving incidence, and transitively on the darts of M .
It follows that M is a regular map of type {m, k}, with G = Auto(M) or Aut(M).

This map M admits also the automorphisms a, b and c (described above) if and
only if the epimorphism ψ extends to an epimorphism ψ̃ : ∆ → G̃ from the full
(2, k,m) triangle group ∆ = ∆(2, k,m) onto a group G̃ containing G as a subgroup
of index 1 or 2. If G has index 2 in G̃ then M is orientable and reflexible, while if
G = G̃ then M is non-orientable, and vice versa. In both cases, the kernel K = kerψ
is normal in ∆. On the other hand, if K = kerψ is not normal in ∆, then M is
orientable but chiral, and the conjugate of K by any element of ∆ \∆o is the kernel
of the epimorphism corresponding to the ‘mirror image’ of M .

In practice, we can tell whether or not an orientably-regular map M of type
{m, k} is reflexible, either by testing for an automorphism of Auto(M) that inverts
the generating pair (r, s) (or the generating pair (rs, s)), or by testing whether the
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kernel K of the epimorphism ψ : ∆o(2, k,m)→ Auto(M) is invariant under conjugacy
by an element of ∆ \∆o.

From this point of view, the study of regular maps can be reduced to the study
of non-degenerate quotients of triangle groups.

As is well known (and shown in [7]), the simplicity of the underlying graphs can
also be reduced to some easy group theory. If 〈s〉 stabilises the vertex v, then 〈sr〉
stabilises the neighbouring vertex vr, and their intersection stabilises both vertices.
It follows that the existence of multiple edges between v and its neighbour vrs is
equivalent to the intersection 〈s〉 ∩ 〈srs〉 being non-trivial, and since the latter is
normalised by both s and rs, it is normal in 〈s, rs〉 = 〈r, s〉 = Auto(M) or Aut(M).

Hence if M is an orientably-regular map, then M has simple underlying graph if
and only if no non-trivial subgroup of the vertex-stabilser is normal in Auto(M).

Note that if Auto(M) is a non-abelian simple group, or ‘almost simple’ (or more
generally, if every minimal normal subgroup of Auto(M) is a non-abelian simple
group), then every cyclic subgroup must be core-free in Auto(M), and in that case,
both M and M∗ have simple underlying graph. The genera of such maps, however,
are somewhat sparse, and so this observation is of little use to us. In the next section,
we produce families of covers of known examples, with the automorphism group each
cover having a cyclic normal subgroup of fixed index.

3 Construction of helpful families of maps

In this Section, we construct several families of orientably-regular maps with simple
underlying graph, which will help us prove our main theorem.

3.1 Family A: Orientably-regular maps of type {3n, 4}

It is well known that a regular octahedron can be viewed as a regular embedding of
its 1-skeleton (which is a 4-valent graph of order 8) on the sphere, giving a Platonic
regular map M , of type {3, 4} and genus 0. The automorphism group of this map is
S4 × C2, with the S4 preserving orientation.

It is also well-known that an infinite family of regular maps of type {3n, 4} can
be constructed as cyclic regular coverings of the octahedral map; see [10] or [13] for
example. These maps can be constructed in a number of ways.

One way is by using semi-direct products, in a way similar to the approach taken
in [5]: for any positive integer n, form the semi-direct product G = NH ∼= C3n o S4

of a cyclic group N = 〈w | w3n = 1 〉 of order 3n by the symmetric group H =
S4 = 〈u, v | u2 = v4 = (uv)3 = 1 〉, with conjugation of N by H given by wu = w−1

and wv = w−1. In this group, define x = wu and y = v; then x2 = y4 = 1 and
(xy)3 = (wuv)3 = w3, which has order n, so the subgroup of G generated by x and y
has order 24n and is the rotation group of an orientably-regular map of characteristic
χ = 24n/(3n)− 24n/2 + 24n/4 = 8− 6n and genus g = 3n− 3.
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The vertex-stabiliser (in the rotation group 〈x, y〉) is the cyclic subgroup of order
4 generated by y = v, and as this contains no non-trivial normal subgroup of 〈x, y〉,
the underlying graph of the map is simple. (On the other hand, the face-stabiliser
is the cyclic subgroup of order 3n generated by xy = wuv, which contains the cyclic
normal subgroup generated by (xy)3 = w3, and so the underlying graph of the dual
map has multiple edges, for n > 1.) Also each map is reflexible, since the involu-
tory automorphism of H = S4 inverting each of u and v extends to an involutory
automorphism of G that inverts each of x = wu and y (and centralises w).

Another way to construct these maps is to take the group Γ with presentation
Γ = 〈x, y | x2 = y4 = (xyxy2)2 = 1 〉, and consider the normal subgroup N of index
24 in Γ generated by the element z = (xy)3. Now the relation (xyxy2)2 = 1 can
be re-written as (yxyxy)2 = 1, which gives (yx)3 = (yxyxy)x = (y−1xy−1xy−1)x =
(xy)−3, and it follows that conjugation by each of x and y−1 inverts the element
z = (xy)3. Hence in particular, z generates a cyclic normal subgroup K in Γ, of index
24, with quotient Γ/K = 〈x, y | x2 = y4 = (xyxy2)2 = (xy)3 = 1 〉 ∼= S4. Next, by
Reidemeister-Schreier theory (see [9] or [12]), or by use of the Rewrite command in
Magma [1], we find that the subgroup K is free of rank 1, and hence infinite. Thus
for each positive integer n, we can factor out the normal subgroup generated by zn,
and get an extension of Cn by S4, just as above. The resulting orientably-regular map
has type {3n, 4} and genus g = 3n − 3, and is reflexible (because its rotation group
admits an involutory automorphism that inverts the images of the two generators x
and y), and its underlying graph is simple, because the cyclic subgroup of order 2
generated by the image of y2 is not normal in the rotation group.

A presentation for the rotation group of the nth map in this family is simply

〈 r, s | (rs)2 = s4 = (r2s−1)2 = r3n = 1 〉,
which can be obtained by taking r = xy and s = y−1. Similarly, a presentation for
the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (ababcb)2 = (ab)3n = 1 〉,
with the rotation group generated by r = ab and s = bc as usual. The first few
members of this family (after the first one, of genus 0) are the duals of the maps
named R3.4, R6.3, R9.11, R12.1 and R15.5 in [4].

For the purposes of this paper, the important point is summarised in the following:

Proposition 3.1 For every positive integer n, there exists a reflexible regular map
of type {3n, 4} and genus 3n − 3, with simple underlying graph (and rotation group
an extension of Cn by S4).

3.2 Family B: Orientably-regular maps of type {4n, 4}

In this case we can start with the toroidal map of type {4, 4}4 (see [8]), with rotation
group H = 〈u, v | u2 = v4 = (uv)4 = [u, v]2 = 1 〉, which is an extension of C2 × C2

by D4, of order 32. and construct an infinite family of cyclic regular coverings of this.
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As in the previous case, for any positive integer n we can form the semi-direct
product G = NH ∼= C4n oH of a cyclic group N = 〈w | w4n = 1 〉 of order 4n by the
above group H, with conjugation of N by H given by wu = w−1 and wv = w−1. Again
we may define x = wu and y = v in his group, and this time we find x2 = y4 = 1 while
(xy)4 = (wuv)4 = w4, which has order n, so the subgroup of G generated by x and y
has order 32n and is the rotation group of an orientably-regular map of characteristic
χ = 32n/(4n)− 32n/2 + 32n/4 = 8− 8n and genus g = 4n− 3.

Again the vertex-stabiliser 〈y〉 (of order 4) contains no non-trivial normal subgroup
of 〈x, y〉, so the underlying graph of the map is simple, while the face-stabiliser 〈xy〉
(of order 4n) contains the cyclic normal subgroup generated by (xy)4 = w4, and so
the underlying graph of the dual map has multiple edges, for n > 1. Also each map
is reflexible, since the automorphism of H inverting each of u and v extends to an
involutory automorphism of G that inverts each of x = wu and y (and centralises w).

For an alternative construction, take the normal subgroup N of index 32 generated
by z = (xy)4 in the group Φ = 〈x, y | x2 = y4 = xyxy2xy−1xy2 = 1 〉. In this group,
the relation xyxy2xy−1xy2 = 1 can be re-written as yxyxy = y−1xyxy−1, giving

(yx)4 = yx(yxyxy)x = yx(y−1xyxy−1)x = (yxy−1xy)xy−1x = (y−1xyxy−1)−1xy−1x
= (yxyxy)−1xy−1x = (y−1xy−1xy−1)xy−1x = (y−1x)4 = (xy)−4,

from which it follows that z = (xy)4 is inverted under conjugation by x and y.
Accordingly, z generates a cyclic normal subgroup K of index 32 in Φ, with quotient
Φ/K = 〈x, y | x2 = y4 = xyxy2xy−1xy2 = (xy)4 = 1 〉 ∼= H, and by Reidemeister-
Schreier we find that K is infinite.

Again for each positive integer n, we can factor out the normal subgroup generated
by zn, and get an extension of Cn by H. The resulting orientably-regular map has
type {4n, 4} and genus g = 4n− 3, and is reflexible (since 〈x, y〉 admits an involutory
automorphism that inverts x and y and centralises z = (xy)4), and its underlying
graph is simple (since 〈y2〉 is not normal in the rotation group).

In fact the group we obtain in this way has the same presentation (in terms of the
images of x and y) as the group defined using the semi-direct product construction,
since in the former case, the relations uw = w−1u and vw = w−1v imply that

xyxy2xy−1xy2 = wuvwuv2wuv−1wuv2 = w1+1−1−1uvuv2uv−1uv2 = uvuv2uv−1uv2,

which is trivial. We will exploit this fact in the next sub-section.

Meanwhile we have the following:

Proposition 3.2 For every positive integer n, there exists a reflexible regular map
of type {4n, 4} and genus 4n − 3, with simple underlying graph (and rotation group
an extension of Cn by the rotation group of the toroidal map of type {4, 4}4).

A presentation for the rotation group of the nth map in this family is simply

〈 r, s | (rs)2 = s4 = (rs−1)2(r−1s)2 = r4n = 1 〉,
which again can be obtained by taking r = xy and s = y−1.
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Note that the relation xyxy2xy−1xy2 = 1 can be rewritten as 1 = xy2xy−1xy2xy,
and when we take r = xy and s = y−1, this gives 1 = rs−1rs−2rs−1r = (rs−1)2(s−1r)2.
On the other hand, it can also be rewritten as 1 = xy2xyxy2xy−1 = xy2xyxy−2xy−1 =
(xy2)2(y−1xy−1)2, which becomes 1 = (rs−1)2(r−1s)2. Hence we find that (r−1s)2 =
(rs−1)2 = (s−1r)2, and in particular, (rs−1)4 = (r−1s)2(r−1s)2 = (r−1s)2(s−1r)2 = 1.
Again we will use this in the next sub-section.

A presentation for the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (abcb)2(babc)2 = (ab)4n = 1 〉,
with the rotation group generated by r = ab and s = bc as usual. The first few
members of the resulting family (after the first one, of genus 1) are the duals of the
maps named R5.6, R9.10 and R13.4 in [4].

3.3 Family C: Orientably-regular maps of type {8n, 4}

Take the group Φ = 〈x, y | x2 = y4 = xyxy2xy−1xy2 = 1 〉 from the previous case,
and for any positive integer n, factor out the cyclic normal subgroup K generated
by z2n = (xy)8n. The resulting quotient is the same as the one obtained using the
semi-direct product construction, and in the group G ∼= C8n oH from that, we have

[x, y2] = xy2xy2 = wuv2wuv2 = w1−1uv2uv2 = (uv2)2,

which is an involution that centralises every power of w. Since the element (uv2)2 is
central in H = 〈u, v〉, this involution is centralised also by each of x (= wu) and y
(= v), and therefore central in G. Also the element (xy)4n is the unique involution in
the cyclic normal subgroup generated by (xy)4, and hence is central in G as well.

These two central involutions [x, y2] = (uv2)2 and (xy)4n are distinct, so their
product [x, y2](xy)4n is a third central involution. Taking the quotient of 〈x, y〉 of the
central subgroup of order 2 generated by this third involution, we obtain a group of
order 32(2n)/2 = 32n, generated by two elements of orders 2 and 4 with product of
order 8n. This gives an orientably-regular map of type {8n, 4}, with characteristic
χ = 32n/(8n)− 32n/2 + 32n/4 = 4− 8n, and genus g = 4n− 1.

Again the map is reflexible, since the automorphism inverting the two generators
of the earlier group centralises both [x, y2] and (xy)4n, and therefore centralises their
product as well. Also the underlying graph of the map is simple (for the same reasons
as before). Thus we have the following:

Proposition 3.3 For every positive integer n, there exists a reflexible regular map
of type {8n, 4} and genus 4n− 1, with simple underlying graph.

A presentation for the rotation group of the nth map in this family is simply

〈 r, s | (rs)2 = s4 = (rs−1)2(r−1s)2 = sr−1sr−1+4n = r8n = 1 〉,
although the last relation is redundant, since the fourth relation sr−1sr−1+4n = 1
gives r4n = (rs−1)2 and therefore r8n = (r4n)2 = (rs−1)4 = 1, by what we observed in
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the previous sub-section. A presentation for the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (abcb)2(babc)2 = bcbabc(ab)−1+4n = 1 〉,
with the rotation group generated by r = ab and s = bc as usual.

The first few members of the resulting family are the duals of the maps named
R3.5, R7.3, R11.2 and R15.6 in [4]. Also the carrier surfaces of these maps can easily
be shown to be the same as those considered by Kulkarni in [11]. On the other hand,
the regular maps with the same parameters obtainable from Maclachlan’s surface
actions in [13] (which include the maps named R3.6, R7.4, R11.3 and R15.7 in [4])
do not have simple underlying graphs.

3.4 Family D: Orientably-regular maps of type {6n, 6}

In this sub-section we exhibit three families of orientably-regular maps of type {6n, 6}
and genus 6n− 2, for n ≡ 0, 1 and 2 mod 3 respectively. The maps in the first family
are chiral, while those in the second and third families are reflexible.

We begin with the second and third families. For n 6≡ 0 mod 3, we take the group
Σ with presentation

Σ = 〈x, y | x2 = y6 = xyxy−2xy−1xy2 = 1 〉,

and consider the two elements u = (xy)2 and v = (xy2)2.

Note that the relation xyxy−2xy−1xy2 = 1 is equivalent (by inversion and con-
jugation) to xyxy2xy−1xy−2 = 1. Also this relation implies that xyx = y−2xyxy2,
and hence that (yx)2 = y(xyx) = y−1xyxy2 = (y−1xy−1x)(xy2xy2) = u−1v. Similarly,
the relation xyxy−2xy−1xy2 = 1 gives xy2x = y−1xy2xy, and so (y2x)2 = y2(xy2x) =
yxy2xy = y(y−1xy2xy)y = xy2xy2 = v. From these observations, we deduce that

ux = (yx)2 = u−1v, uy = y−1xyxy2 = u−1v (as above),

vx = (y2x)2 = xy2xy2 = v, vy = y−1xy2xy3 = (y−1xy2xy)y2 = xy2xy2 = v.

In particular, the subgroup N generated by u and v is normal in Σ. The quotient
Σ/N is generated by the (involutory) images of the elements x and xy, and hence is
dihedral of order 12, so N has index 12 in Σ. Also v is centralised by both generators
of Σ, and hence by u, and therefore N is abelian. Moreover, u3 = (xy)6, while

v3 = (xy2)2(xy2)2(xy2)2 = (xy2)2(y2x)2(xy2)2 = xy2xy−2xy−2xy2

= y−1xy2xyy−2xy−2xy2 = y−1(xy2xy−1xy−2xy)y = 1.

Thus Σ is isomorphic to an extension of Z⊕Z3 by D6. Also (u3)x = (u3)y = (u−1v)3 =
u−3v3 = u−3, and therefore the element u3 generates a cyclic normal subgroup of Σ,
with index 9 in N and index 108 in Σ. By Reidemeister-Schreier theory, this subgroup
is infinite. (Some of these things can also be verified with the help of Magma.)

Now for any positive integer n, we may factor out the normal subgroup generated
by u3n, and get a quotient of order 108n that is the rotation group of an orientably-
regular map of type {6n, 6}, characteristic 108n/(6n)− 108n/2 + 108n/6 = 18− 36n,
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and genus 18n−8. This map is reflexible, since the group Σ admits an automorphism
θ which inverts x and y, and takes u = (xy)2 to (xy−1)2 = x(y−1x)2x = (u−1)x =
(u−1v)−1 = uv−1 and v = (xy2)2 to (xy−2)2 = x(y−2x)2x = (v−1)x = v−1, and this
automorphism takes u3 to (uv−1)3 = u3, so preserves the quotient Σ/〈u3m〉.

But also the normal subgroup N/〈u3n〉 of this quotient has a characteristic abelian
subgroup of order 9 generated by un = (xy)2n and v (each of order 3).

If n ≡ 1 mod 3, say n = 3d − 2, then the element unv generates a cyclic normal
subgroup of Σ, since (unv)y = unv and

(unv)x = (u−1v)nv = u−nvn+1 = (unv)−1vn+2 = (unv)−1v3d = (unv)−1.

When we factor out this subgroup of order 3, we get a quotient of order 36n that
is the rotation group of an orientably-regular map of type {6n, 6}, characteristic
36n/(6n)− 36n/2 + 36n/6 = 6− 12n, and genus 6n− 2. The underlying graph of the
map is simple for all such n > 1, since neither 〈y2〉 nor 〈y3〉 is normal in the rotation
group, but that does not happen for the case n = 1 (since in that case v = (xy2)2

becomes trivial, so (y2)x = y−2, which then makes 〈y2〉 normal in 〈x, y〉). Also the
map is reflexible (for all n), since the inverting automorphism θ of Σ takes unv to
(uv−1)nv−1 = unv−n−1 = (unv)v−n−2 = (unv)v−3d = unv.

Similarly, if n ≡ 2 mod 3, say n = 3d + 2, then the element unv−1 generates a
cyclic normal subgroup of Σ, since (unv−1)y = unv−1 and

(unv−1)x = (u−1v)nv−1 = u−nvn−1 = (unv−1)−1vn−2 = (unv−1)−1v3d = (unv−1)−1,

and when we factor out this subgroup of order 3, again we get a quotient of order 36n
that is the rotation group of an orientably-regular map of type {6n, 6}, characteristic
36n/(6n)−36n/2+36n/6 = 6−12n, and genus 6n−2, with simple underlying graph.
Again the map is reflexible, since the inverting automorphism θ of Σ takes unv−1 to
(uv−1)nv = unv−n+1 = (unv−1)v−n+2 = (unv−1)v−3d = unv−1.

Thus we get two families of reflexible maps with the desired properties. The first
few members of these two families are the duals of the maps named R10.16, R22.9,
R28.21, R40.5, R40.5 and R46.23 in the first author’s website of orientably-regular
maps of genus 2 to 101 (see [3]).

For given n 6≡ 0 mod 3, a presentation for the rotation group of the map is given by

〈 r, s | (rs)2 = s6 = r2s3rs2rs−1 = r2n(rs−3)±2 = 1 〉,
with the final superscript in the last relator being +2 for all n ≡ 1 mod 3, and −2 for
all n ≡ 2 mod 3. Correspondingly, a presentation for the full automorphism group is

〈 a, b, c | a2 = b2 = c2 = (ac)2 = (bc)6 = (ab)2(bc)3acbcabcb = (ab)2n(abcbcbcb)±2 = 1 〉,
with the rotation group generated by r = ab and s = bc as usual.

For the case n ≡ 0 mod 3, the above approach does not work; indeed there is
no such map (with the above parameters and with simple underlying graph) when
n = 3, 6, 9, 12 or 15, for example. Instead, we start with a different group Λ, with
presentation
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Λ = 〈x, y | x2 = y6 = (xyxy2)2 = (xy2)2(xy−2)2 = 1 〉.
The relations in this group imply yxy2xy = xy−2x, and hence 1 = xy2xy2xy−2xy−2

= xy(yxy2xy)y3xy−2 = xy(xy−2x)y3xy−2, which gives us xy−2xy3 = y−1xy2x.

Now take u = xy−2xy2 and v = (xy)3(xy−1)3. Then we find ux = y−2xy2x = u−1

and vx = (yx)3(y−1x)3 = v−1, while uy = y−1xy−2xy3 = y−1y−1xy2x = u−1, and
vy
−1

= yvy−1 = (yx)3(y−1x)3 = v−1, from which it follows that also vy = v−1. Hence
both u and v are inverted under conjugation by each of x and y, and in particular,
the subgroup N generated by u and v is normal in Λ. Moreover, since v is centralised
by y2, we find that v is centralised by xy−2xy2 = u, and so N is abelian.

Also (xy)6 = (xy)3(xy−1)3(yx)3(xy)3 = vyxyxy2xyxy = vyx(xy−2x)xy = v. It
follows from this (with the help of Magma [1] if necessary) that the quotient Λ/N
has order 36, and then by Reidemeister-Schreier, we find that N is isomorphic to
Z3 ⊕ Z, with the Z3 generated by u, and with v infinite. (Indeed

u3 = xy−2xy2xy−2xy2xy−2xy2 = xy−2xy2(y2xy−2x)xy−2xy2 = xy−2xy−2xy2xy2 = 1.)

It follows that the subgroup generated by v itself is normal in N , with index 108,
and when we factor out the subgroup generated by vn for any positive integer n, we
get a quotient of order 108n in which the image of xy has order 6n. Accordingly,
this quotient is again the rotation group of an orientably-regular map of type {6n, 6},
characteristic 108n/(6n)−108n/2 + 108n/6 = 18−36n, and genus 18n−8. Also this
map is reflexible, since the rotation group admits an automorphism that inverts the
images of x and y, and then takes the image of u = xy−2xy2 to the image of xy2xy−2 =
y2x(xy−2xy2)xy−2 = uxy

−2
= u−1 and similarly the image of v = (xy)3(xy−1)3 to the

image of (xy−1)3(xy)3 = (y−1x)3((xy)3(xy−1)3)(xy)3 = v(xy)3 = v.

But if n is divisible by 3, say n = 3m, and we factor out the normal subgroup
generated by uvm, then we get a different quotient, of order 108m = 36n, in which
the image of xy has order 18m, since the image of v = (xy)6 has order 3m (with the
image of vm coinciding with the image of u−1). This gives an orientably-regular map
of type {18m, 6}, characteristic 108m/(18m) − 108m/2 + 108m/6 = 6 − 36m, and
genus 18m− 2 = 6n− 2, but the map is no longer reflexible, since any automorphism
that inverts the images of x and y must take the image of uvm (which is trivial) to
u−1vm (which is not). On the other hand, the underlying graph is simple, since the
images of the subgroups generated by y2 and y3 are not normal.

Thus we have a family of chiral maps of type {6n, 6} and genus 6n − 2, for n
divisible by 3, all with simple underlying graphs.

A presentation for the rotation group (in the case n = 3m) is

〈 r, s | (rs)2 = s6 = (r2s−1)2 = (rs−1)2(rs3)2 = rs3rs−1rn/3 = 1 〉,
again obtainable by taking r = xy and s = y−1.

The first few members of the resulting family are the duals of the maps named
C16.1, C34.1, C52.1, C70.1 and C88.1 in the first author’s website of orientably-
regular maps of genus 2 to 101 (see reference [3]).
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Thus we have the following:

Proposition 3.4 For every integer n > 1, there exists an orientably-regular map of
type {6n, 6} and genus 6n− 2, with simple underlying graph. In fact if n 6≡ 0 mod 3,
then there exists such a map that is reflexible, while if n ≡ 0 mod 3, there exists such
a map that is chiral.

Note that the four families of maps we have described so far have genera congruent
to 0, 1, 3, 4, 5, 6, 7, 9, 10 and 11 mod 12. For the remaining two congruence classes
(namely 2 and 8 mod 12), maps described in the next section will be helpful.

4 Orientably-regular maps of type {6, 6}
A well-known family of regular maps of type {6, 6} was introduced by Sherk [14] in
the 1960s, using a construction based on the automorphism groups of the toroidal
maps of type {3, 6}. The maps in Sherk’s family are indexed by ordered pairs (α, β)
of non-negative integers, with rotation group of the form

Gα,β = 〈 r, s | (rs)2 = r6 = s6 = (r2s−1)2 = (r−2s−2)α(r2s2)β = 1 〉

for each such pair (α, β) 6= (0, 0). This group has order 12k where k = α2 + αβ + β2,
and the corresponding map (which we will denote by S(α,β)) has genus k+ 1, and the
map S(α,β) is reflexible if and only if αβ(α− β) = 0. For example, S(0,1), S(1,0), S(0,2),
S(1,1), S(2,0), S(1,2) and S(2,1) are respectively the maps R2.5, R2.5, R5.10, the dual of
R4.8, R5.10, the dual of C8.1, and the mirror image of the dual of C8.1 in [4].

The underlying graph of S(α,β) is simple except when α+β ≤ 2, for in those cases
〈s3〉 or 〈s2〉 is normal in Gα,β (while no such degeneracy occurs when α + β > 2).

Hence the Sherk family gives orientably-regular maps of genus g (and type {6, 6})
with simple underlying graphs, for all g expressible in the form α2 + αβ + β2 + 1
where α and β are non-negative integers with α + β > 2. This set of possible
genera is ‘quadratic’ rather than ‘linear’, and so asymptotically is less dense than
the arithmetic progressions of genera provided by the families in the sub-sections
above, but nevertheless it covers some genera that the previous families do not, such
as 8, 14, 20, 26, 32, 38, 44, 50, 62, 68, 74, 80, 92 and 98 (but not 56 or 86).

On the other hand, the underlying graph of the dual of S(α,β) is never simple,
for the relation (r2s−1)2 = 1 can be rewritten as (r3(rs)−1)2 = 1, which implies that
conjugation by the involution rs inverts r3, and hence 〈r3〉 is always normal in Gα,β.

Below we will show that there exist other families of orientably-regular maps of
type {6, 6} with simple underlying graph that not only have genera covering some of
the remaining gaps in the genus spectrum, but also have a dual with simple underlying
graph as well. These will be obtained as covers of a particular map of type {6, 6} and
genus 2, namely the map R2.5 in [4], which has rotation group C2 × C6.
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One way is via a semi-direct product construction, similar to the one used before.
Let n be any odd positive integer with the property that some unit t in Zn has
multiplicative order 6, and form the semi-direct product G = NH of a cyclic group
N = 〈w |wn = 1 〉 of order n by the groupH = C2×C6 = 〈u, v | u2 = v6 = [u, v] = 1 〉,
with conjugation of N by H given by wu = w−1 and wv = wt. In this group, define
x = u and y = wv. Then xyxy−1 = uwvuv−1w−1 = w−2uvuv−1 = w−2, which
generates N , and it follows that x and y generate G. Clearly x has order 2, while the
orders of y = wv and xy = uvw = w−1uv are multiples of 6.

In fact, y6 = (wv)6 = w1+t+t2+t3+t4+t5 and (xy)6 = (uwv)6 = w−(1−t+t2−t3+t4−t5),
so y and xy have order 6 precisely when 1+t+t2 +t3 +t4 +t5 and 1−t+t2−t3 +t4−t5
are both congruent to 0 mod n. If these two conditions hold, then subtracting one
from the other gives 2(1 + t2 + t4) ≡ 0 mod n, and hence 1 + t2 + t4 ≡ 0 mod n.
Conversely, if 1+t2 +t4 ≡ 0 mod n, then 1+t+t2 +t3 +t4 +t5 = (1+t)(1+t2 +t4) ≡ 0
mod n and 1− t+ t2 − t3 + t4 − t5 = (1− t)(1 + t2 + t4) ≡ 0 mod n, so this group G
can be constructed precisely when 1 + t2 + t4 ≡ 0 mod n.

In that case, G is the rotation group of an orientably-regular map of type {6, 6},
characteristic χ = 12n/6 − 12n/2 + 12n/6 = −2n, and genus n + 1. Moreover, it
is easy to verify that xy−2xy2 = w2(t+t2) and xy−3xy3 = w2(t+t2+t3), and it follows
that the underlying graph of this map is simple if and only if t + t2 and t + t2 + t3

are non-zero mod n. Similarly, xy−2xy2 = w2(t−t2) and xy−3xy3 = w2(t−t2+t3), so
the underlying graph of the dual map is simple if and only if t − t2 and t − t2 + t3

are non-zero mod n. Also if the map has simple underlying graph then it must be
chiral, since any automorphism of G that inverts each of x and y must conjugate
w−2 = xyxy−1 to xy−1xy = w−2, and therefore centralises w, but on the other
hand, it must also conjugate w2(t+t2) = xy−2xy2 to xy2xy−2 = w−2(1+t5), so that
t+ t2 ≡ −(1 + t5) = −(t2 + t)t5 mod n, which is impossible.

Examples include some of the Sherk maps (of genus 8, 14, 20, 32, 38, 44, 50, 62,
68, 74, 80, 92 and 98 for example), but also others for which both the map and its
dual have simple underlying graph, such as the maps C22.2, C40.2, C58.2, C92.1 and
C94.2 from [3], arising when (n, t) = (21, 10), (39, 4), (57, 46), (91, 30) and (93, 37).

Some other classes can be constructed as follows:

Let Ψ be the group with presentation Ψ = 〈x, y | x2 = y6 = (xy)6 = 1 〉.
Then the derived group Ψ′ of Ψ (which is generated by the conjugates of the ele-

ment [x, y]) has index 12 in Ψ, with quotient Ψ/Ψ′ isomorphic to C2 × C6, which is
the rotation group of the regular map R2.5. In fact, by Reidemeister-Schreier (or by
using the Rewrite command in Magma), we find that the subgroup Ψ′ is generated
by the four elements

w1 = xy−1xy, w2 = xyxy−1, w3 = xy−2xy2, w4 = xy2xy−2,

subject to a single defining relation w−1
2 w4w

−1
3 w1w2w

−1
4 w3w

−1
2 = 1. Note that the

fifth commutator of the form xy−ixyi, namely w5 = xy−3xy3 = xy3xy−3, is easily
expressible as a product w3w

−1
1 w−1

2 w4; this is left as an exercise for the reader. In
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particular, the above generators and single defining relation for Ψ′ show that the
abelianisation Ψ′/(Ψ′)′ of Ψ′ is free abelian of rank 4.

Now let us move to the quotient Ψ/(Ψ′)′ of Ψ, which we will call G, and denote its
derived subgroup Ψ′/(Ψ′)′ by K. Then G is an extension of the free abelian subgroup
K ∼= Z4 by G/K ∼= C2 × C6. Also (for notational convenience) let us keep the same
symbols x and y as the generators of G, and the same symbols w1 to w4 as the
generators of K.

Then the action of the generators x and y by conjugation on the generators wi of
K may be given as follows:

w1
x = y−1xyx = w−1

1 , w2
x = yxy−1x = w−1

2 ,

w3
x = y−2xy2x = w−1

3 , w4
x = y2xy−2x = w−1

4 ,

and

w1
y = y−1xy−1xy2 = (y−1xyx)(xy−2xy2) = w−1

1 w3,

w2
y = y−1xyx = w−1

1 ,

w3
y = y−1xy−2xy3 = (y−1xyx)(xy−3xy3) = w−1

1 w3w
−1
1 w−1

2 w4,

w4
y = y−1xy2xy−1 = (y−1xyx)(xyxy−1) = w−1

1 w2.

Accordingly, the generators x and y induce linear transformations of the free
abelian group K ∼= Z4 as follows:

x 7→


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 and y 7→


−1 0 1 0
−1 0 0 0
−2 −1 1 1
−1 1 0 0

 .

These matrices generate a group isomorphic to G/K ∼= C2 × C6,

They can be reduced mod m for any positive integer m, giving the corresponding
action of x and y on the group K/K(m), where K(m) is the (characteristic) subgroup
of K generated by the mth powers of all the wi. Such actions can be used to consider
subgroups of finite index in K that are invariant under the action of x and y (or in
other words, subgroups of K that are normal in G with finite quotient), just as we
did recently in a paper on arc-transitive abelian regular covers of cubic graphs [6].

In particular, when m is odd, we can change the basis of K from {w1, w2, w3, w4}
to {z1, z2, z3, z4} where

z1 = w1w
−1
4 , z2 = w2w

−1
3 , z3 = w1w

m+1
2

2 w
m−1

2
3 , z4 = w

m+1
2

1 w2w
m−1

2
4 ,

and get new matrices representing x and y, as follows:

x 7→


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 and y 7→


0 −1 0 0
1 1 0 0
0 0 −1 1
0 0 −1 0

 .
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This shows that the group K/K(m) can be expressed as the direct sum of two
G-invariant subgroups of rank 2, say U and V , generated by the images of {z1, z2}
and {z3, z4} respectively. Factoring out U or V gives a quotient of G of order 12m2,
which is the rotation group of an orientable-regular map of type {6, 6}, characteristic
12m2/6− 12m2/2 + 12m2/6 = −2m2 and genus m2 + 1.

Now the automorphism of G that inverts x and y clearly interchanges w1 = xy−1xy
with xyxy−1 = w2, and similarly interchanges w3 with w4, and hence interchanges z1

with z2, and z3 with z4, and it follows that each of the two resulting maps is reflexible.

One of these maps has simple underlying graph, while the other does not. In the
quotient obtained by factoring U , the element z1 = w1w

−1
4 = xy−1xy(xy2xy−2)−1 =

xy−1xy3xy−2x becomes trivial, and forces 1 = xy3xy−2xxy−1 = xy3xy−3, so that y3 is
centralised by x, and hence the map obtained by factoring out U has multiple edges.
On the other hand, this does not happen in the quotient obtained by factoring V .
For example, when m = 3, these maps are R10.15 (for U) and its dual (for V ).

In fact it is not difficult to see that U and V are interchanged by an automorphism
that interchanges xy with y−1, corresponding to map duality.

But the story does not end here. For some values of m, the G-invariant subgroups
U and V are reducible, and we can factor out a larger (or smaller) subgroup L of
K/K(m), and get the rotation group of an orientable-regular map of type {6, 6} with
simple underlying graph. Similarly for m even, we can find other kinds of non-trivial
proper G-invariant subgroups of K/K(m), and factor out those. Examples obtainable
in this way for which both the primal and dual maps have simple underlying graph
include R10.13, C17.3, R17.20, C22.2, R28.9, R37.23, C40.2, C49.4, R49.36, R49.37,
C50.3 and C50.4 (see [3]), with the rotation groups of these examples being isomorphic
to extensions byG/K ∼= C2×C6 of (C3)

2, (C4)
2, (C2)

4, C21, (C3)
3, (C6)

2, C39, C4×C12,
C4 × C12, (C2)

3 × C6, C7 × C7 and C7 × C7, respectively.

5 Main theorem

The families of orientable regular maps with simple underlying graphs presented in
Section 3 give us the following:

Theorem 5.1 For every positive integer g ≡ 0, 1, 3, 4 or 5 mod 6, there exists at least
one orientably-regular map of genus g with simple underlying graph.

Note that the family D (presented in sub-section 3.4) did not include a map of
genus 4, but the map R4.2 of type {4, 5} in [4] has simple underlying graph.

The above theorem covers 5/6 of all genera — indeed all except those congruent to
2 mod 6. Various families of maps of type {6, 6} cover some of the remaining genera,
as described in Section 4. It is also clear from the computational data obtained by
the first author (see [3]) that there are numerous other families and examples.

In fact the first author has recently extended the determination of all orientably-
regular maps up to genus 301, and there are no gaps at all in this range; in other
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words, for every positive integer g ≤ 301, there exists at least one orientably-regular
map of genus g with simple underlying graph.

For g in the range 2 ≤ g ≤ 301 that are congruent to 2 mod 6, there is an
orientably-regular map of type {6, 6} with simple underlying graph except when g = 2,
86, 116, 146, 188, 206, 236, 254, 266 or 296, and in all those cases, there are maps of
other types with simple underlying graph — such as the duals of R2.1 (of type {8, 3})
and R86.4 (of type {20, 6}).

This gives us some confidence to make the following conjecture, although the ques-
tion of how to prove it remains wide open:

Conjecture 5.2 For every non-negative integer g, there exists at least one orientably-
regular map of genus g with simple underlying graph.
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