Hamming dimension of a graph - the case of Sierpiński graphs

Sandi Klavžar*
Faculty of Mathematics and Physics, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia
and
Faculty of Natural Sciences and Mathematics, University of Maribor
Koroška 160, 2000 Maribor, Slovenia
sandi.klavzar@fmf.uni-lj.si
Iztok Peterin*
Faculty of Electrical Engineering and Computer Science
University of Maribor, Smetanova ulica 17, 2000 Maribor
iztok.peterin@uni-mb.si
Sara Sabrina Zemljič
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia
sara.zemljic@gmail.com

Abstract

The Hamming dimension of a graph G is introduced as the largest dimension of a Hamming graph into which G embeds as an irredundant induced subgraph. An upper bound is proved for the Hamming dimension of Sierpiński graphs S_{k}^{n}, $k \geq 3$. The Hamming dimension of S_{3}^{n} grows as 3^{n-3}. Several explicit embeddings are constructed along the way, in particular into products of generalized Sierpiński triangle graphs. The canonical isometric representation of Sierpiński graphs is also explicitly described.

Keywords: Hamming graphs; Hamming dimension; Sierpiński graphs; Cartesian product of graphs; induced embeddings; isometric embeddings

AMS Subj. Class. (2010): 05C60, 05C76, 05C78

[^0]
1 Introduction

Several graph dimensions based on embeddings into product graphs have been studied by now. The isometric dimension of G is the largest number of factors of a Cartesian product graph, such that G is an irredundant, isometric subgraph of the product [6]. The strong isometric dimension is defined analogously, except that one embeds into the strong product of paths [3, 4], while the lattice dimension is defined via embeddings into Cartesian products of paths $[2,13]$. The lattice dimension of a graph G is finite if and only if G is isometrically embeddable into some hypercube. For additional related dimensions see [8, Section 15.3].

In this paper we introduce the Hamming dimension $\operatorname{Hdim}(G)$ of a graph G as the largest dimension of a Hamming graph into which G embeds as an irredundant induced subgraph. Clearly, $\operatorname{Hdim}(G)=1$ if and only if G is a complete graph. Moreover, $\operatorname{Hdim}(G)<\infty$ if and only if G admits a certain edge labeling, see Theorem 3.1 below. Note that $K_{4}-e$ is the smallest graph with $\operatorname{Hdim}\left(K_{4}-e\right)=\infty$. The general problem of determining the Hamming dimension of a graph seems very demanding, here we will study this concept on Sierpiński graphs.

Sierpiński graphs S_{k}^{n} were introduced and studied for the first time in [15]. The study was motivated in part by the fact that for $k=3$ these graphs are isomorphic to the Tower of Hanoi graphs [9] and in part by topological studies. For details about the latter motivation see Lipscomb's book [20]. Sierpiński graphs were later independently introduced in [23].

The graphs S_{k}^{n} were investigated from numerous points of view, we recall some of them. These graphs contain (essentially) unique 1-perfect codes [16], a classification of their covering codes is given in [5]. In [7] a shorter proof is given for the uniqueness of 1-perfect codes and their optimal $L(2,1)$-labelings are presented. Equitable $L(2,1)$ labelings were later studied in [1]. The crossing number of Sierpiński graphs and their natural regularizations was studied in [17], giving first infinite families of graphs of fractal nature for which the crossing number was determined (up to the crossing number of complete graphs). Metric properties of Sierpiński graphs were investigated in [12, 21]. To determine the chromatic number of these graphs is easy, while in [11] it is proved that they are in edge- and total coloring class 1, except those isomorphic to a complete graph of odd or even order, respectively. Recently, the hub number of Sierpiński graphs was determined in [19].

As already said, Sierpiński graphs are closely related to the Tower of Hanoi. In [24], Romik used the Sierpiński labeling of S_{3}^{n} to construct an appealing finite automaton that solves the decision problem of whether the largest disc moves once or twice on a shortest path from a regular to another regular configuration in the Tower of Hanoi problem. For connections between the Sierpiński graphs S_{3}^{n} (alias Hanoi graphs) and the Stern's diatomic sequence see [10].

We proceed as follows. In the rest of this section we give necessary definitions. In the next section Sierpiński graphs and generalized Sierpiński triangle graphs are introduced
and some of their properties recalled. Then, in Section 3, the theory from [18] on induced embeddings into Hamming graphs and more generally, into Cartesian product graphs, is recalled. It is applied to describe induced embeddings of Sierpiński graphs into Cartesian products of generalized Sierpiński triangle graphs. In Section 4 it is proved that for any $n \geq 2$,

$$
\operatorname{Hdim}\left(S_{3}^{n}\right) \geq \frac{7}{4} \cdot 3^{n-3}+3 \cdot 2^{n-4}+\frac{3}{2} n-\frac{9}{4} .
$$

In the subsequent section an upper bound for $\operatorname{Hdim}\left(S_{k}^{n}\right), k \geq 3$. Together with the lower bound it implies that $\operatorname{Hdim}\left(S_{3}^{n}\right)$ asymptotically grows as 3^{n-3}. As proved in [6], an irredundant isometric embedding into the largest number of factors is unique and called the canonical isometric representation. In the last section we explicitly describe this embedding of S_{k}^{n}.

The Cartesian product $G \square H$ of graphs G and H is the graph with the vertex set $V(G) \times V(H)$, where the vertex (g, h) is adjacent to the vertex $\left(g^{\prime}, h^{\prime}\right)$ whenever $g g^{\prime} \in$ $E(G)$ and $h=h^{\prime}$, or $g=g^{\prime}$ and $h h^{\prime} \in E(H)$. The Cartesian product is commutative and associative, products whose all factors are complete are called Hamming graphs. The dimension of a Hamming graph is the number of its factors, that is, the number of coordinates of its vertices. We say that a graph G is an irredundant subgraph of $\square_{i=1}^{p} G_{i}$ if each G_{i} has at least two vertices and any vertex of G_{i} appears as a coordinate of some vertex of G. With these concepts we can thus state:

$$
\operatorname{Hdim}(G)=\max \left\{p \mid G \text { is irredundant induced subgraph of } \square_{i=1}^{p} K_{p_{i}}\right\} .
$$

The distance $d(u, v)=d_{G}(u, v)$ between vertices u and v of a graph G is the length of a shortest u, v-path in G. A subgraph H of a graph G is isometric if for each pair of vertices u, v of H there exists a shortest u, v-path in G that lies entirely in H. Finally, by a labeled graph we mean a graph together with a labeling of its edges.

2 Sierpiński graphs

The Sierpiński graph $S_{k}^{n}, k, n \geq 1$, is defined on the vertex set $\{1, \ldots, k\}^{n}$, two different vertices $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ being adjacent if and only if there exists an $h \in\{1, \ldots, n\}$ such that
(i) $u_{t}=v_{t}$, for $t=1, \ldots, h-1$;
(ii) $u_{h} \neq v_{h}$; and
(iii) $u_{t}=v_{h}$ and $v_{t}=u_{h}$ for $t=h+1, \ldots, n$.

In the rest we will use abbreviation $\left\langle u_{1} u_{2} \ldots u_{n}\right\rangle$ for $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. On figures, this will be further simplified to $u_{1} u_{2} \ldots u_{n}$. The Sierpiński graph S_{3}^{4} together with the corresponding vertex labeling is shown on Fig. 1.

A vertex of the form $\langle i i \ldots i\rangle$ of S_{k}^{n} is called an extreme vertex. Note that S_{k}^{n} contains k extreme vertices and that $\left|V\left(S_{k}^{n}\right)\right|=k^{n}$. Let $n \geq 2$, then for $i=1, \ldots, k$, let $i S_{k}^{n-1}$ be

Figure 1: The Sierpiński graph S_{3}^{4}
the subgraph of S_{k}^{n} induced by the vertices of the form $\left\langle i v_{2} \ldots v_{n}\right\rangle$. More generally, for given $i_{1}, \ldots, i_{r} \in\{1, \ldots, k\}$, we denote with $i_{1} \ldots i_{r} S_{k}^{n-r}$ the subgraph of S_{k}^{n} induced by the vertices of the form $\left\langle i_{1} \ldots i_{r} v_{r+1} \ldots v_{n}\right\rangle$. Note that $i S_{k}^{n-1}$ is isomorphic to S_{k}^{n-1}, and, more generally, $i_{1} \ldots i_{r} S_{k}^{n-r}$ is isomorphic to S_{k}^{n-r}.

An edge of S_{k}^{n} of the form $\left\langle u_{1} u_{2} \ldots u_{n-1} i\right\rangle\left\langle u_{1} u_{2} \ldots u_{n-1} j\right\rangle, i \neq j$, will be called a clique edge. A clique edge is contained in a unique subgraph K_{k} of S_{k}^{n}. The other edges will be called non-clique edges. Let $i \neq j$. Then the edge $\langle i j j \ldots j\rangle\langle j i i \ldots i\rangle$ is the unique edge between $i S_{k}^{n-1}$ and $j S_{k}^{n-1}$. It will be denoted with $e_{i j}^{(n)}=e_{j i}^{(n)}$. Consider the subgraph $i_{1} \ldots i_{r} S_{k}^{n-r}$ of S_{k}^{n}. Then the edge between $\left\langle i_{1} \ldots i_{r} j \ell \ldots \ell\right\rangle$ and $\left\langle i_{1} \ldots i_{r} \ell j \ldots j\right\rangle$ will be denoted $i_{1} \ldots i_{r} e_{j \ell}^{(n-r)}$.

Setting

$$
\rho_{i, j}= \begin{cases}1 & i \neq j \\ 0 & i=j\end{cases}
$$

the following holds:

Lemma 2.1 [15] Let $\left\langle u_{1} u_{2} \ldots u_{n}\right\rangle$ and $\langle i i \ldots i\rangle$ be vertices of S_{k}^{n}. Then

$$
d_{S_{k}^{n}}\left(\left\langle u_{1} u_{2} \ldots u_{n}\right\rangle,\langle i i \ldots i\rangle\right)=\rho_{u_{1}, i} \rho_{u_{2}, i} \ldots \rho_{u_{n}, i}
$$

where the right-hand side is a binary number with digits $\rho_{u_{j}, i}$. Moreover, a shortest path between $\left\langle u_{1} u_{2} \ldots u_{n}\right\rangle$ and $\langle i i \ldots i\rangle$ is unique.

The unique path in S_{k}^{n} between $\langle i i \ldots i\rangle$ and $\langle j j \ldots j\rangle$ will be denoted $P_{i j}^{(n)}$. Similarly, in the subgraph $i_{1} \ldots i_{r} S_{k}^{n-r}$, there is a unique path between $\left\langle i_{1} \ldots i_{r} j j \ldots j\right\rangle$ and $\left\langle i_{1} \ldots i_{r} \ell \ell \ldots \ell\right\rangle$, it will be denoted $i_{1} \ldots i_{r} P_{j \ell}^{(n-r)}$. By the uniqueness of the shortest paths between extreme vertices, it follows that there is also a unique shortest cycle of S_{k}^{n} containing the edges $e_{i j}^{(n)}, e_{j \ell}^{(n)}$, and $e_{\ell i}^{(n)}$, where $i, j, \ell \in\{1,2, \ldots, k\}$ are pairwise different. This cycle will be denoted $C_{i j \ell}^{(n)}$.

One of our embeddings will be an embedding into the Cartesian product of generalized Sierpiński triangle graphs, a class of graphs introduced in [14] as 2-parametric Sierpiński gasket graphs. For $n \geq 1$ and $k \geq 3$, the generalized Sierpiński triangle graph $\widehat{S_{k}^{n}}$ is the graph obtained from S_{k}^{n} by contracting all non-clique edges of S_{k}^{n}. Note that $\widehat{S_{k}^{1}}=K_{k}(k \geq 3)$. For $\widehat{S_{4}^{2}}$ see Fig. 2, where $\{i, j\}$ denotes the vertex obtained by contracting the edge $\langle i j\rangle\langle j i\rangle$.

3 Embeddings into products of generalized Sierpiński triangle graphs

In this section we first summarize the theory developed in [18] about induced embeddings of graphs into Hamming graphs.

Let G be a connected graph and let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{p}\right\}$ be a partition of $E(G)$. Such a partition yields the corresponding labeling $\ell: E(G) \rightarrow\{1,2, \ldots, p\}$ by setting $\ell(e)=i$ for $e \in F_{i}$. For our purpose, the following conditions of a labeling are crucial:

Condition A. Let G be a labeled graph. Then edges of a triangle have the same label.
Condition B. Let G be a labeled graph and let u and v be arbitrary vertices of G with $d_{G}(u, v) \geq 2$. Then there exist different labels i and j which both appear on any induced u, v-path.

Now we can recall:

Figure 2: The generalized Sierpiński triangle graph $\widehat{S_{4}^{2}}$

Theorem 3.1 [18] Let G be a connected graph. Then $\operatorname{Hdim}(G)<\infty$ if and only if there exists a labeling of G that fulfills Conditions A and B.

The proof of Theorem 3.1 is constructive in the following way. If G is an induced subgraph of a Hamming graph with p factors, then the labeling of G that respects the projection of the edge uses p labels and satisfies Conditions A and B. Conversely, let $\mathcal{F}=\left\{F_{1}, \ldots, F_{p}\right\}$ be a partition of $E(G)$ such that the corresponding labeling ℓ fulfills Conditions A and B. For every $i=1, \ldots, p$, define the graph G / F_{i} whose vertices are the connected components of $G \backslash F_{i}$, two components C and C^{\prime} being adjacent in G / F_{i} whenever there exists an edge of F_{i} connecting a vertex of C with a vertex of C^{\prime}. Let $f_{i}: V(G) \rightarrow V\left(G / F_{i}\right)$ be the natural projection, that is, $u \in V(G)$ is mapped to the component of $G \backslash F_{i}$ to which it belongs. Then

$$
\begin{equation*}
f=\left(f_{1}, \ldots, f_{p}\right): G \rightarrow G / F_{1} \square \cdots \square G / F_{p} \tag{1}
\end{equation*}
$$

is an induced embedding of G. Moreover, by adding edges to each factor G / F_{i} to make it complete, the embedding f is still induced. It follows that f can be considered as an induced embedding of G into a Hamming graph. In addition, f is an irredundant embedding meaning that each G / F_{i} has at least two vertices and each vertex of it appears as a coordinate in some image of a vertex of G. (To obtain an induced embedding of G into a Cartesian product (of factors that are not necessarily complete), Condition B must be modified, see [22].)

We will make use of the following additional properties of a labeling that fulfills Condition B, see [18, Lemmas 3.1 and 3.2]:
(i) in an induced cycle of length >3, every label must appear at least twice, and
(ii) if every induced path between two vertices contains labels i and j, then every path between these two vertices contains these two labels.

In addition, it is easy to see that if a maximal part of an induced cycle C is labeled alternatively with i and j, then i and j must also exist on the other part of C. In particular, if we have the sequence $i j i$ on C, then i appears at least once more on C.

We now turn our attention to Sierpiński graphs. Every S_{k}^{n} can be embedded in a Hamming graph with two factors as follows. Label the clique and the non-clique edges of S_{k}^{n} with labels p and q, respectively. Call this labeling a $p \mid r$-labeling. Clearly, a $p \mid r$-labeling fulfills Condition A. Moreover, since no two non-clique edges are incident, Condition B holds as well.

Let $k \geq 3$. Then the Sierpiński triangle labeling of S_{k}^{n} is inductively defined as follows. Label the edges of $S_{k}^{1} \cong K_{k}$ with label 1. Suppose now $S_{k}^{n}, n \geq 1$, has already been labeled. Then label every subgraph $i S_{k}^{n}(1 \leq i \leq k)$ of S_{k}^{n+1} identically as S_{k}^{n} and label the edges $e_{i j}^{(n+1)}$ with label $n+1$. Clearly, the Sierpiński triangle labeling of S_{k}^{n} uses n labels. Note also that the Sierpiński triangle labeling of S_{k}^{2} coincides with its 1|2-labeling.

Theorem 3.2 Let $k \geq 3$ and $n \geq 1$. Then the Sierpiński triangle labeling of S_{k}^{n} yields an induced embedding

$$
S_{k}^{n} \rightarrow \widehat{S_{k}^{n}} \square \widehat{S_{k}^{n-1}} \square \cdots \square \widehat{S_{k}^{1}} .
$$

Proof. Let $k \geq 3$ be a fixed integer. The Sierpiński triangle labeling clearly fulfills Condition A. Let u, v be two non-adjacent vertices of S_{k}^{n}. Consider a shortest path P between u and v and let i be the largest label on P. Then $i>1$ and every induced path between u and v contains labels 1 and i. Hence Condition B is fulfilled and thus the embedding (1) can be used.

Let $F_{i}, 1 \leq i \leq n$, be the set of edges of S_{k}^{n} labeled with $n-i+1$ in the Sierpiński triangle labeling of S_{k}^{n}. We are going to prove that for any $n \geq 1$ and for any $1 \leq i \leq n$, $S_{k}^{n} / F_{i}=\widehat{S_{k}^{i}}$.

Let $n=1$. Then $S_{k}^{1}=K_{k}$ and all of its edges are labeled with 1. Hence $\widehat{S_{k}^{1}}=$ $K_{k}=S_{k}^{1} / F_{1}$. Suppose Theorem 3.2 holds for some $n \geq 1$ and consider S_{k}^{n+1}. Since $F_{1}=\left\{e_{i j}^{(n+1)} \mid i \neq j\right\}$ we infer that $S_{k}^{n+1} / F_{1}=K_{k}=\widehat{S_{k}^{1}}$. Let next $i \geq 2$. Then every edge of F_{i} lies in some subgraph $j S_{k}^{n}$. Let $j F_{i}$ be the restriction of F_{i} to $j S_{k}^{n}$ and note that $j F_{i}$ coincides with the labeling as F_{i-1} in S_{k}^{n}. Hence, by the induction hypothesis, it follows that $j S_{k}^{n} / j F_{i}=\widehat{S_{k}^{i-1}}$. But then $S_{k}^{n+1} / F_{i}=\widehat{S_{k}^{i}}$ by the way the generalized Sierpiński triangle graphs are constructed.

4 A lower bound on $\operatorname{Hdim}\left(S_{3}^{n}\right)$

In this section we prove:
Theorem 4.1 For any $n \geq 2$,

$$
\operatorname{Hdim}\left(S_{3}^{n}\right) \geq \frac{7}{4} \cdot 3^{n-3}+3 \cdot 2^{n-4}+\frac{3}{2} n-\frac{9}{4} .
$$

To prove the theorem we construct a merging labeling of $S_{3}^{n}, n \geq 2$, as follows. For $n=2$, label every edge of $i S_{3}^{1}$ with i and for any $j \neq k$, label the edge $e_{j k}^{(2)}$ with i, where $\{i, j, k\}=\{1,2,3\}$. Proceed by induction on n as follows. Label every $i S_{3}^{n-1}$ with the same pattern as S_{3}^{n-1}, but such that $i S_{3}^{n-1}$ and $j S_{3}^{n-1}$ use pairwise different labels for any $i \neq j$. In addition, label the edges $e_{12}^{(n)}, e_{23}^{(n)}$, and $e_{13}^{(n)}$ with the same labels as $3 e_{12}^{(n-1)}, 1 e_{23}^{(n-1)}$, and $2 e_{13}^{(n-1)}$, respectively. Note that this labeling does not fulfill Condition B since some labels appears only once at $C_{123}^{(n)}$.

We thus need to merge every label that appears only once on $1 P_{23}^{(n-1)}$, only once on $2 P_{13}^{(n-1)}$, and only once on $3 P_{12}^{(n-1)}$ with the exception of the edges $1 e_{23}^{(n-1)}, 2 e_{13}^{(n-1)}$, and $3 e_{12}^{(n-1)}$, respectively. The merging is done as follows. Consider the following pairs of oriented subpaths of $C_{123}^{(n)}: 12 P_{23}^{(n-2)}, 32 P_{21}^{(n-2)} ; 13 P_{23}^{(n-2)}, 23 P_{13}^{(n-2)}$; and $31 P_{12}^{(n-2)}, 21 P_{13}^{(n-2)}$ Here oriented means that each of these paths has it start and its end, for instance, $12 P_{23}^{(n-2)}$ starts in $\langle 122 \ldots 2\rangle$ and ends in $\langle 1233 \ldots 3\rangle$. Now traverse $12 P_{23}^{(n-2)}$ and $32 P_{21}^{(n-2)}$ in parallel. As soon as a label ℓ_{1} is found on $12 P_{23}^{(n-2)}$ that appears only once on $1 P_{23}^{(n-1)}$, merge it with the corresponding label ℓ_{3} of $32 P_{21}^{(n-2)}$. (Note that ℓ_{3} also appears only once on $3 P_{21}^{(n-1)}$ by the construction.) More precisely, we replace every label ℓ_{3} in S_{3}^{n} with ℓ_{1}. Do the same procedure for the other two pairs of paths. An example of a merging labeling of S_{3}^{5} is shown in Fig. 3.

Proposition 4.2 A merging labeling of $S_{3}^{n}, n \geq 2$, fulfills Conditions A and B.
Proof. Edges that form a triangle are labeled with the same label, hence Condition A is fulfilled. Note also that Condition B is fulfilled on S_{3}^{2}. Let now $n>2$ and let u, v be vertices of S_{3}^{n} with $d(u, v) \geq 2$. Let p be the smallest in the sense that both u and v are in $i_{1} i_{2} \ldots i_{p} S_{3}^{n-p}$. Then $p<n-1$ since $d(u, v) \geq 2$. Let $u \in i_{1} i_{2} \ldots i_{p} j_{1} S_{3}^{n-p-1}$, $v \in i_{1} i_{2} \ldots i_{p} j_{2} S_{3}^{n-p-1}$, and let $\left\{j_{1}, j_{2}, j_{3}\right\}=\{1,2,3\}$.

Let P be a shortest u, v-path. Suppose first that P contains the edges $i_{1} i_{2} \ldots i_{p} e_{j_{1} j_{3}}^{(n-p)}$ and $i_{1} i_{2} \ldots i_{p} e_{j_{2} j_{3}}^{(n-p)}$. Then the labels of these two edges are on any induced u, v-path by the way the merging labeling is constructed. In the other case, P contains a unique edge of the form $e=i_{1} i_{2} \ldots i_{p} e_{r q}^{(n-p)}$, namely the edge $i_{1} i_{2} \ldots i_{p} e_{j_{1} j_{2}}^{(n-p)}$. By the same argument its label appears on every induced u, v-path. Since $d(u, v) \geq 2$, the edge e has at least one incident edge on P, say f. We may assume without loss of generality that $f \in$

Figure 3: A merging labeling of S_{3}^{5}
$i_{1} i_{2} \ldots i_{p} j_{2} S_{3}^{n-p-1}$. Then the label of f appears also on the triangle of $i_{1} i_{2} \ldots i_{p} j_{3} S_{3}^{n-p-1}$ that is incident with the edge $i_{1} i_{2} \ldots i_{p} e_{j_{1} j_{3}}^{(n-p)}$. Again by the construction, the label of f appears on any induced u, v-path.

Lemma 4.3 Let S_{3}^{n}, $n \geq 2$, be labeled with a merging labeling. Then every label of a non-clique edge of $P_{i j}^{(n)}, i, j \in\{1,2,3\}$, besides $e_{i j}^{(n)}$, appears exactly twice on $P_{i j}^{(n)}$.

Proof. There is nothing to be proved for $n=2$. We can restrict to $P_{23}^{(n)}$ by symmetry. Note that the labels of the edges $2 e_{23}^{(n-1)}$ and $3 e_{23}^{(n-1)}$ are merged in S_{3}^{n} and have thus
the same label. Hence every label of a non-clique edge of $P_{i j}^{(n)}, i, j \in\{1,2,3\}$, besides $e_{i j}^{(n)}$, appears at least twice on $P_{i j}^{(n)}$ by induction.

It remains to prove that no non-clique edge appears more than twice. This clearly holds for $n=3,4$, cf. Fig. 3. Let now $n \geq 5$. Note first that the assertion holds for the label of $2 e_{23}^{(n-1)}$ and $3 e_{23}^{(n-1)}$. Indeed, their labels were unique on $2 P_{23}^{(n-1)}$ and $3 P_{23}^{(n-1)}$, respectively and were henceforth merged in the last step of the construction. The label of the edges $22 e_{23}^{(n-2)}$ and $23 e_{23}^{(n-2)}$ (which is the same) appears only once on $2 P_{13}^{(n-1)}$ and is also merged in S_{3}^{n}. But this label appears on $23 P_{13}^{(n-2)}$ and is merged with a label from $13 P_{23}^{(n-1)}$. In other words, this label does not appear in $3 S_{3}^{n-1}$ and consequently not on $3 P_{23}^{(n-1)}$. By symmetry, the assertion also holds for the label of the edges $32 e_{23}^{(n-2)}$ and $33 e_{23}^{(n-2)}$.

Next we show that the label ℓ of non-clique edges $222 e_{23}^{(n-3)}$ and $223 e_{23}^{(n-3)}$ appears twice on $2 P_{13}^{(n-1)}$ and is not merged in S_{3}^{n}. Clearly ℓ appears once on $223 P_{13}^{(n-3)}$ (on the edge incident with $\langle 22311 \ldots 1\rangle$) and was in $2 S_{3}^{n-1}$ merged with the label of the edge on $213 P_{23}^{(n-3)}$ incident with $\langle 21322 \ldots 2\rangle$. This label is in $21 S_{3}^{n-2}$ present also on the edges $211 e_{13}^{(n-3)}$ and $213 e_{13}^{(n-3)}$, which are both on $2 P_{13}^{(n-1)}$.

Similarly, the label ℓ^{\prime} of the edges $232 e_{23}^{(n-3)}$ and $233 e_{23}^{(n-3)}$ appears twice on $2 P_{13}^{(n-1)}$ and is not merged in S_{3}^{n}. Clearly ℓ^{\prime} appear once on $2 P_{13}^{(n-1)}$ since it is in the triangle of the extreme vertex $\langle 23311 \ldots 1\rangle$ in $233 S_{3}^{n-3}$. But ℓ^{\prime} is also in the triangle of the extreme vertex $\langle 23211 \ldots 1\rangle$ in $232 S_{3}^{n-3}$. Hence it was merged in $2 S_{3}^{n-1}$ with the label of the triangle of the extreme vertex $\langle 21333 \ldots 3\rangle$ in $212 S_{3}^{n-3}$. But this was again merged in $21 S_{3}^{n-2}$ with the label of the triangle of the extreme vertex $\langle 21133 \ldots 3\rangle$, which lie on $2 P_{13}^{(n-1)}$.

The conclusion also holds for the labels of $P_{23}^{(n)}$ in $3 S_{3}^{n-1}$ that are symmetric to the edges in previous two paragraphs.

Finally, for all the other non-clique edges of $P_{23}^{(n)}$ the statement follows by induction.

Next we calculate the number of labels of a merging labeling of S_{3}^{n}. Let b_{n} be the number of labels different from 1 that appear on $P_{23}^{(n)}$ exactly once. In other words, b_{n} is the number of labels of $1 S_{3}^{n}$ that will be merged with some other label in S_{3}^{n+1}. (Clearly label 1 will not be merged.) Hence

$$
b_{n}=2 b_{n-1}-2 c_{n},
$$

where c_{n} represents the number of labels that appear twice on $P_{23}^{(n)}$ for the first time. To determine c_{n}, Lemma 4.3 implies that we only need to find clique edges whose labels appear twice on $P_{23}^{(n)}$ for the first time and, moreover, one edge must be in $2 S_{3}^{n-1}$ and the second one in $3 S_{3}^{n-1}$. By the way merging is defined this can happen if the first
edge is in $223 S_{3}^{n-3}$ and its label appears on both $22 P_{23}^{(n-2)}$ and $22 P_{13}^{(n-2)}$ exactly once. The label of such an edge is then merged with the label of some edge in $213 S_{3}^{n-3}$ that again appears on $21 P_{23}^{(n-2)}$ and $21 P_{13}^{(n-2)}$ exactly once. The edge on $21 P_{13}^{(n-2)}$ is then on $C_{123}^{(n)}$ and its label is merged with the label of an edge in $312 S_{3}^{n-3}$ that appears on $31 P_{12}^{(n-2)}$ and $31 P_{23}^{(n-2)}$ exactly once by symmetry. Finally this was merged with a label in $332 S_{3}^{n-3}$ that again appears only once on $33 P_{12}^{(n-2)}$ and $33 P_{23}^{(n-2)}$. Loking to Fig. 3 we infer that that $c_{4}=1$ (label 9) and $c_{5}=1$ (label 17).

Hence we need to treat clique edges on $223 P_{23}^{(n-3)}$. For this sake we define even and odd clique edges of $P_{23}^{(n)}$ as follows. Let $T_{1}, T_{2}, \ldots, T_{2^{n-1}}$ be the consecutive triangles with edges in $P_{23}^{(n)}$. (On Fig. 3, triangle T_{1} is labeled with 13 , and T_{16} with 22.) Then we say that a clique edge $e \in P_{23}^{(n)}$ is even/odd if $e \in T_{i}$ and i is even/odd. Note that the label of an odd clique edge from $223 P_{23}^{(n-3)}$ appears twice on $22 P_{13}^{(n-2)}$. Hence it appears twice on $2 C_{123}^{(n-1)}$ and is not merged at this step. So we only need to consider even clique edges from $223 P_{23}^{(n-3)}$. We will show by induction that $c_{n}=n-4$ for $n \geq 5$. Note that for $n=5$ there is only one such label, namely label 17 on Fig. 3. For S_{3}^{n}, $n>5$, every even clique edge of $2233 P_{23}^{(n-4)}$ has this property as well as the even clique edge of $T_{3 \cdot 2^{n-5}}$. Hence $c_{n}=n-4$ for $n \geq 5$.

Returning back to b_{n} we now have:

$$
b_{n}=2 b_{n-1}-2(n-4), b_{5}=10,
$$

which solves to

$$
b_{n}=2^{n-3}+2 n-4, n \geq 5 .
$$

Note that this formula holds also for $n=4$.
Let finally $a_{n}, n \geq 4$, be the number of labels in a merging labeling of S_{3}^{n}. Then

$$
a_{n}=3 a_{n-1}-\frac{3}{2} b_{n-1}=3 a_{n-1}-\frac{3}{2}\left(2^{n-4}+2 n-6\right), a_{4}=12
$$

since we merge six parts into three by pairs. The theorem now easily follows. (We need to check $n=2,3$ separately.)

5 An upper bound on $\operatorname{Hdim}\left(S_{k}^{n}\right)$

In this section we prove an upper bound on the Hamming dimension of S_{k}^{n} for $k \geq 3$. We first establish some exact values.

Proposition 5.1 (i) $\operatorname{Hdim}\left(S_{3}^{2}\right)=3, \operatorname{Hdim}\left(S_{3}^{3}\right)=6$.
(ii) For any $k \geq 4, \operatorname{Hdim}\left(S_{k}^{2}\right)=2$.

Proof. (i) By Theorem 4.1, $\operatorname{Hdim}\left(S_{3}^{2}\right) \geq 3$. That $\operatorname{Hdim}\left(S_{3}^{2}\right) \leq 3$ follows by the fact that on the cycle $C_{123}^{(2)}$ of S_{3}^{2} each label appears at least twice. Note that the merging labeling is the unique 3 -labeling of S_{3}^{2} that satisfies Conditions A and B.

Using Theorem 4.1 again we have $\operatorname{Hdim}\left(S_{3}^{3}\right) \geq 6$. Since $C_{123}^{(3)}$ has length 12 (and every label of an induced cycle must appear at least twice on it), there can be at most 6 different labels on $C_{123}^{(3)}$. If for $\{i, j, \ell\}=\{1,2,3\}$ every $\ell P_{i j}^{(2)}$ contains three labels in ℓS_{3}^{2}, then each ℓS_{3}^{2} contains the same three labels as $\ell P_{i j}^{(2)}$ (because the merging labeling is the unique appropriate 3-labeling of S_{3}^{2}). Such a labeling thus uses at most 6 different labels. Similarly, if some $\ell P_{i j}^{(2)}$ contains only two different labels we infer that only these two labels can be used on ℓS_{3}^{2}.
(ii) Let $k \geq 4$. We claim that the $1 \mid 2$-labeling of S_{k}^{2} yields a unique induced embedding of S_{k}^{2} into a Hamming graph and hence $\operatorname{Hdim}\left(S_{k}^{2}\right)=2$.

Since S_{k}^{2} is not a complete graph we need at least two labels. By Condition A, all edges of $i S_{k}^{1}, i=1,2, \ldots, k$, must receive the same label. By Condition B, every edge $e_{i j}^{(2)}, j \neq i$, must have different label from the labels of $i S_{k}^{1}$ and $j S_{k}^{1}$. If all $i S_{k}^{1}$ have the same label, then the non-clique edges of any cycle $C_{p q r}^{(2)}$ must have the same label, for otherwise one label appears only once on $C_{p q r}^{(2)}$. Since p, q, and r are arbitrary we obtain the $1 \mid 2$-labeling.

Suppose next that two of $i S_{k}^{1}, i=1,2, \ldots, k$, are labeled with 1 and among the others at least one with 2 . We may choose the notation so that $1 S_{k}^{1}$ and $2 S_{k}^{1}$ have label 1 and $3 S_{k}^{1}$ label 2. Then by Condition B, edges $e_{12}^{(2)}, e_{13}^{(2)}$, and $e_{23}^{(2)}$ cannot have label 1, moreover $e_{13}^{(2)}$ and $e_{23}^{(2)}$ cannot have label 2 by the same condition. But then $e_{12}^{(2)}$ must have label 2 , for otherwise we have the same contradiction as above in $C_{123}^{(2)}$. Consider now vertices $\langle 13\rangle$ and $\langle 23\rangle$ to find the final contradiction with Condition B.

Assume finally that all the $i S_{k}^{1}, i=1,2, \ldots, k$, have different labels, say $i S_{k}^{1}$ has label i. To satisfy Condition B , the edge $e_{12}^{(2)}$ of $C_{123}^{(2)}$ must have label 3 , $e_{13}^{(2)}$ label 2, and $e_{23}^{(2)}$ label 1. By the same argument applied on $C_{124}^{(2)}$, the edge $e_{12}^{(2)}$ must have label 4, a final contradiction.

We are now ready for the main result of this section.

Theorem 5.2

$$
\begin{aligned}
\text { (i) } \quad \operatorname{Hdim}\left(S_{3}^{n}\right) & \leq 5 \cdot 3^{n-3}+1 \quad(n \geq 3) \\
\text { (ii) } \operatorname{Hdim}\left(S_{k}^{n}\right) & \leq \frac{2}{k-1} k^{n-2}+\frac{2 k-4}{k-1} \quad(n \geq 2) .
\end{aligned}
$$

Proof. Labels that appear in more than one $i S_{k}^{n-1}$ will be called common labels.
For a fixed k and $n \geq 3$, consider a labeling of S_{k}^{n} that fulfills Conditions A and B and uses $\operatorname{Hdim}\left(S_{k}^{n}\right)$ labels. This labeling has at most $\operatorname{Hdim}\left(S_{k}^{n-1}\right)$ different labels in
each subgraph $i S_{k}^{n-1}$ (because $i S_{k}^{n-1}$ is isomorphic to S_{k}^{n-1}). In addition, by Condition B, there must be at least two labels in each $i S_{k}^{n-1}$ that appear also in $S_{k}^{n} \backslash i S_{k}^{n-1}$. Hence we get

$$
\operatorname{Hdim}\left(S_{k}^{n}\right) \geq k\left(\operatorname{Hdim}\left(S_{k}^{n-1}\right)-2\right)+\alpha_{n},
$$

where α_{n} denotes the maximum number of common labels. Setting

$$
a_{n}=k\left(a_{n-1}-2\right)+\alpha_{n},
$$

we thus have $\operatorname{Hdim}\left(S_{k}^{n}\right) \leq a_{n}$.
Consider $i S_{k}^{n-1}$ and $C_{i j \ell}^{(n)}$. For the closest vertices of $e_{i j}^{(n)}$ and $e_{i \ell}^{(n)}$ on $C_{i j \ell}$ we observe that by Condition B we need (at least) two labels of $i S_{k}^{n-1}$ on the other part of $C_{i j \ell}^{(n)}$. Hence for every $i=1,2, \ldots, k$ there are at most $a_{n-1}-2$ labels that appear only in $i S_{k}^{n-1}$. First we assume that the maximum number of labels is attained when we have $a_{n-1}-2$ different labels in every $i S_{k}^{n-1}$. Even more, these two labels cannot be on $e_{i j}^{(n)}$ or $e_{i \ell}^{(n)}$, since otherwise we can include these two edges and consider the other two vertices of $e_{i j}^{(n)}$ and $e_{i \ell}^{(n)}$. Thus we have 6 positions on $C_{i j \ell}^{(n)}$ for new labels in $i S_{k}^{n-1}$, $j S_{k}^{n-1}$, and ℓS_{k}^{n-1}, and additional 3 edges $e_{i j}^{(n)}, e_{i \ell}^{(n)}$ and $e_{j \ell}^{(n)}$-all together 9 positions. By the above argument, each position in $i S_{k}^{n-1}, j S_{k}^{n-1}$, and ℓS_{k}^{n-1} may contain more than one edge but all such edges can be viewed just as one. But then in $C_{i j \ell}^{(n)}$ we may have at most $4=\left\lfloor\frac{9}{2}\right\rfloor$ common labels.

Suppose now that we can use 5 common labels. First we consider a longer path $P_{i j \ell}$ between $\langle i \ell \ell \ldots \ell\rangle$ and $\langle j \ell \ell \ldots \ell\rangle$ in $C_{i j \ell}$ for every i, j, and ℓ. If every $C_{i j \ell}$ contains at most two common labels, $P_{i j \ell}$ clearly contains both labels. But then $P_{i j r}=P_{i j \ell}$ for every $r \notin\{i, j, \ell\}$ and every $C_{i j r}$ contains these two labels. This is a contradiction since we have used 5 common labels. Next suppose that every $C_{i j \ell}$ contains at most 3 common labels. If $P_{i \ell j}$ contains only two of these labels, then both $P_{i j \ell}$ and $P_{j \ell i}$ contain all three. Again $P_{i j r}=P_{i j \ell}$ for every $r \notin\{i, j, \ell\}$ and every $C_{i j r}$ contains these three labels-a contradiction. Next suppose that $C_{i j \ell}$ contains four common labels. If $P_{i j \ell}$ contains only three common labels, we have only 4 positions in $C_{i j \ell}-P_{i j \ell}$ and one label, say 4 is present only on $C_{i j \ell}-P_{i j \ell}$. By the above, both $e_{i \ell}^{(n)}$ and $e_{j \ell}^{(n)}$ must have label 4. The label of $e_{i j}^{(n)}$, say 3 , must be in ℓS_{k}^{n-1} together with a common label 2. Label 2 must also be in one of $i S_{k}^{n-1}$ or $j S_{k}^{n-1}$. We may assume that it is in $i S_{k}^{n-1}$ (together with label 1). Hence $P_{i \ell j}$ contains four common labels. If label 5 exists in $r S_{k}^{n-1}, r \notin\{i, j, \ell\}$, then $C_{i \ell r}$ contains 5 common labels which is not possible. Hence let $e_{p r}^{(n)}$ have label 5 . If $p \in\{i, \ell\}$ (or by symmetry $r \in\{i, \ell\}$) then $C_{i \ell r}$ (or $C_{i \ell p}$) contains 5 common labels again. If finally $p, r \notin\{i, j, \ell\}$, either $e_{p i}^{(n)}$ or $e_{r i}^{(n)}$ have label 5 which is not possible. Thus $\alpha_{n} \leq 4$, hence

$$
a_{n}=k\left(a_{n-1}-2\right)+4, a_{3}=4 .
$$

By Proposition 5.1, the initial conditions for $k=3$ and $k \geq 4$ are $\operatorname{Hdim}\left(S_{3}^{3}\right)=6$ and $\operatorname{Hdim}\left(S_{k}^{2}\right)=2$, respectively. Solving the recurrence yields the result.

Corollary 5.3 For any $k \geq 4, \operatorname{Hdim}\left(S_{k}^{3}\right)=4$.
Proof. By Theorem 5.2, $\operatorname{Hdim}\left(S_{k}^{3}\right) \leq 4$. A 4-labeling of S_{k}^{3} that satisfies Conditions A and B can be constructed as follows. Use the $1|2-, 2| 3-, 3 \mid 4-$, and $4 \mid 1$-labelings on $1 S_{k}^{2}$, $2 S_{k}^{2}, 3 S_{k}^{2}$, and $4 S_{k}^{2}$, respectively. Label the edges $e_{12}^{(3)}, e_{23}^{(3)}, e_{34}^{(3)}$, and $e_{14}^{(3)}$ with $4,1,2$, and 3 , respectively. Next, we may choose labels 2 or 4 for the edge $e_{13}^{(3)}$ and labels 1 or 3 for the edge $e_{24}^{(3)}$. Finally, for every $i \in\{5,6, \ldots, k\}$ use the $1 \mid 3$-labeling on $i S_{k}^{2}$, label edges $e_{i 1}^{(3)}$ and $e_{i 2}^{(3)}$ with 4, edges $e_{i 3}^{(3)}$ and $e_{i 4}^{(3)}$ with 2, and all the other edges $e_{i j}^{(3)}$, $j \in\{5,6, \ldots, k\}, i \neq j$, with 2 . For this labeling, Condition A clearly holds. Moreover, a straightforward checking on cycles $C_{p q r}^{(3)}$ shows that Condition B is fulfilled for it as well.

Note that in Theorem 5.2 the equality holds for S_{k}^{2} and $S_{k}^{3}, k \geq 4$. The upper bound (ii) is also exact for S_{4}^{4}. Indeed, the bound is 12 , and on the other hand, two different appropriate labelings of S_{4}^{4} are shown in Fig. 5.

6 Isometric embedding

In this final section we consider isometric embeddings of S_{k}^{n} into Cartesian product graphs. In this case the classical theory due to Graham and Winkler asserts that there is a unique such embedding that is irredundant and has the largest number of factors. The embedding is described in many papers and books, see for instance [8], and is called the canonical isometric representation. We recall that it is defined just as the embedding f was introduced in Section 3 where the partition of the edge set of G is done with respect to the transitive closure Θ^{*} of the relation Θ. Here edges $e=x y$ and $f=u v$ of G are in relation Θ if $d(x, u)+d(y, v) \neq d(x, v)+d(y, u)$. The canonical isometric representation is trivial if G contains only one Θ^{*} class.

It is easy to see that no two edges of a geodesic are in relation Θ, a fact that will be used later. We will also need the following well-known lemma, cf. [8]:

Lemma 6.1 Suppose P is a walk connecting the endpoints of an edge e. Then P contains an edge $f \neq e$ with $e \Theta f$.

Now we have:
Proposition 6.2 Let $k \geq 4$. Then for any $n \geq 1$ the canonical isometric representation of S_{k}^{n} is trivial.

Figure 4: Two labelings of S_{4}^{4}

Proof. For a given $k \geq 4$ we proceed by induction on n. Graph S_{k}^{1} is isomorphic to K_{k}, hence the assertion clearly holds in this case. Let $n>1$. Then for $i=1, \ldots, k$, the subgraph $i S_{k}^{n-1}$ contains a single Θ^{*}-class by the induction assumption. For $i=$ $3,4, \ldots, k$, let $C_{12 i}^{(n)}$ be a shortest cycle containing the edges $e_{12}^{(n)}, e_{1 i}^{(n)}$, and $e_{2 i}^{(n)}$. Then Lemma 6.1 implies that $C_{12 i}^{(n)}$ contains an edge f with $f \Theta e_{12}^{(n)}$. Moreover, f can only lie in $i S_{k}^{n-1}$. Hence the edges of $i S_{k}^{n-1}, i \geq 3$, all lie in the same Θ^{*}-class. By the symmetry of S_{k}^{n}, the canonical isometric representation of S_{k}^{n} is then trivial.

By Proposition 6.2 we may hope for a nontrivial isometric representation of S_{k}^{n} only
when $k=3$. This is indeed the case as the main result (Theorem 6.5) of this section asserts. We need some preparation for it.

Proposition 6.3 Let $n \geq 1$ and let F be a Θ^{*}-class of S_{3}^{n}. Then $\left|P_{i j}^{(n)} \cap F\right| \geq 1$ for $i \neq j$.

Proof. The statement is clearly true for $n=1$. Let $n>1$ and let F be an arbitrary Θ^{*}-class of S_{3}^{n}. If $\left|F \cap i S_{3}^{n-1}\right| \geq 1$, then by the induction hypothesis (applied to $i S_{3}^{n-1}$), F intersects shortest paths $i P_{i j}^{(n-1)}, i P_{i \ell}^{(n-1)}$, and $i P_{j, \ell}^{(n-1)}$ for $\{i, j, \ell\}=\{1,2,3\}$. Let e be in $i P_{j, \ell}^{(n-1)} \cap F$. If the antipodal edge of e on $C_{123}^{(n)}$ is $e_{j \ell}^{(n)}$, we are done since $e_{j \ell}^{(n)}$ is on $P_{j, \ell}^{(n)}$. Otherwise, the antipodal edge of e on $C_{123}^{(n)}$ is either on $j P_{i \ell}^{(n-1)}$ or $\ell P_{i j}^{(n-1)}$. Induction completes the proof.

It is well-known (and easy to prove) that edges from different blocks of a graph are not in relation Θ and hence also not in relation Θ^{*}. For our purposes we need the following modification of this fact.

Lemma 6.4 Let H be isometric subgraph of G and let e and f be edges from different blocks of H. Then e is not in relation Θ with f in G.

Proof. Let $e=u v$ and $f=x y$. By the above fact, e and f are not in relation Θ in H, that is,

$$
d_{H}(u, x)+d_{H}(v, y)=d_{H}(u, y)+d_{H}(v, x) .
$$

Since H is an isometric subgraph of G, it follows that

$$
d_{G}(u, x)+d_{G}(v, y)=d_{G}(u, y)+d_{G}(v, x),
$$

hence e and f are not in relation Θ in G.
Note that we cannot conclude in Lemma 6.4 that e and f are not in relation Θ^{*} in G. For instance, consider P_{3} as a subgraph of $K_{2,3}$. Then it is isometric in $K_{2,3}$ yet its edges are in relation Θ^{*}.

To describe Θ^{*}-classes of S_{3}^{n}, let $\{i, j, k\}=\{1,2,3\}$ and set

$$
F_{n}^{i}=\left\{\left\langle i^{n}\right\rangle\left\langle i^{n-1} j\right\rangle,\left\langle i^{n}\right\rangle\left\langle i^{n-1} k\right\rangle\right\} \cup\left\{e_{j k}^{(\ell)} \mid \ell=1,2, \ldots, n\right\} .
$$

Note that $\left|F_{n}^{i}\right|=n+2$.
Now we cab state the main result of this section:
Theorem 6.5 Let $n \geq 2$. Then the Θ^{*}-classes of S_{3}^{n} are $F_{n}^{1}, F_{n}^{2}, F_{n}^{3}$, and $\widetilde{F_{n}}=$ $E\left(S_{3}^{n}\right) \backslash\left(F_{n}^{1} \cup F_{n}^{2} \cup F_{n}^{3}\right)$.

Figure 5: The factor graph $S_{3}^{4} / \widetilde{F_{4}}$
Proof. It is straightforward to check the result for $n=2$, where $\widetilde{F_{3}}=\emptyset$ so that in this case we have three Θ^{*}-classes.

Let $i \in\{1,2,3\}$ and consider F_{n}^{i}. By induction assumption (and the fact that $i S_{3}^{n-1}$ is an isometric subgraph of S_{3}^{n}), we infer that $\left\langle i^{n}\right\rangle\left\langle i^{n-1} j\right\rangle,\left\langle i^{n}\right\rangle\left\langle i^{n-1} k\right\rangle \in F_{n}^{i}$, as well as $e_{j k}^{(\ell)} \in F_{n}^{i}$ for $\ell=1,2, \ldots, n-1$. Moreover, the edge $e_{j k}^{(n)}$ belongs to F_{n}^{i} because it is the antipodal edge of $e_{j k}^{(n-1)}$ on $C_{123}^{(n)}$. (Recall that $C_{123}^{(n)}$ is the shortest cycle containing the edges $e_{12}^{(n)}, e_{23}^{(n)}$, and $e_{31}^{(n)}$.) Hence the edges of F_{n}^{i} belong to a common Θ^{*}-class. It remains to show that (i) no two edges from different sets $F_{n}^{1}, F_{n}^{2}, F_{n}^{3}$, and $\widetilde{F_{n}}$ are in relation Θ and that (ii) in $\widetilde{F_{n}}$ any two edges are in relation Θ^{*}.

For assertion (i), by symmetry it suffices to prove that no edge of F_{n}^{1} is in relation Θ with any other edge. Moreover, denoting with G_{2} and G_{3} the connected components of $S_{3}^{n} \backslash F_{n}^{1}$, where $\left\langle 2^{n}\right\rangle \in G_{2}$, it suffices (using symmetry again) to prove that no edge of F_{n}^{1} is in relation Θ with an edge of G_{2}.

Note first that G_{2} is isometric in S_{3}^{n}. Moreover, the graph induced with $V\left(G_{2}\right)$ and vertices $\left\langle 1^{n}\right\rangle$ and $\left\langle 1^{n-1} 3\right\rangle$ is also isometric in S_{3}^{n}. Then Lemma 6.4 implies that none of the edges $\left\langle 1^{n}\right\rangle\left\langle 1^{n-1} 2\right\rangle,\left\langle 1^{n}\right\rangle\left\langle 1^{n-1} 3\right\rangle$, and $\left\langle 1^{n-1} 2\right\rangle\left\langle 1^{n-1} 3\right\rangle$ is in relation Θ with no edge in G_{2}. Let $\ell \in\{0, \ldots, n-2\}$ and consider the subgraph of S_{3}^{n} induced by G_{2} and $\left\langle 132^{n-\ell-1}\right\rangle$. We infer again that this subgraph is isometric, hence applying Lemma 6.4 we conclude that $\left\langle 1^{n-1} 2\right\rangle\left\langle 1^{n-1} 3\right\rangle$ is in relation Θ with no edge of G_{2}. This proves (i).

It remains to prove that any two edges of $\widetilde{F_{n}}$ are in relation Θ^{*}. If $n=3$, it is
straightforward to check that $\langle 112\rangle\langle 121\rangle \Theta\langle 322\rangle\langle 321\rangle \Theta\langle 122\rangle\langle 123\rangle$. By symmetry and transitivity the result follows. Let $n \geq 4$. Then because $C_{123}^{(n)}$ is isometric,

$$
\left\langle 12^{n-1}\right\rangle\left\langle 12^{n-2} 3\right\rangle \Theta\left\langle 321^{n-2}\right\rangle\left\langle 321^{n-3} 2\right\rangle
$$

as well as

$$
\left\langle 12^{n-2} 3\right\rangle\left\langle 12^{n-3} 32\right\rangle \Theta\left\langle 321^{n-3} 2\right\rangle\left\langle 321^{n-4} 21\right\rangle .
$$

Now apply induction, symmetry, and transitive closure to conclude that $\widetilde{F_{n}}$ is indeed a Θ^{*}-class.

References

[1] L. Beaudou, S. Gravier, S. Klavžar, M. Kovše, M. Mollard, Covering codes in Sierpiński graphs, Discrete Math. Theoret. Comput. Sci. 12 (2010) 63-74.
[2] D. Eppstein, The lattice dimension of a graph, European J. Combin. 26 (2005) 585-592.
[3] S. L. Fitzpatrick, R. J. Nowakowski, The strong isometric dimension of finite reflexive graphs, Discuss. Math. Graph Theory 20 (2000) 23-38.
[4] D. Fronček, J. Jerebic, S. Klavžar, P. Kovář, Strong isometric dimension, biclique coverings, and Sperner's Theorem, Comb. Prob. Comp. 16 (2007) 271-275.
[5] H.-Y. Fu, D. Xie, Equitable $L(2,1)$-labelings of Sierpiński graphs, Australas. J. Combin 46 (2010) 147-156.
[6] R. L. Graham, P. M. Winkler, On isometric embeddings of graphs, Trans. Amer. Math. Soc. 288 (1985) 527-536.
[7] S. Gravier, S. Klavžar, M. Mollard, Codes and $L(2,1)$-labelings in Sierpiński graphs, Taiwanese J. Math. 9 (2005) 671-681.
[8] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.
[9] A. M. Hinz, The Tower of Hanoi, Enseign. Math. (2) 35 (1989) 289-321.
[10] A. Hinz, S. Klavžar, U. Milutinović, D. Parisse and C. Petr, Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence, European J. Combin. 26 (2005) 693-708.
[11] A. M. Hinz, D. Parisse, Coloring Hanoi and Sierpiński graphs, Discrete Math., in press: doi:10.1016/j.disc.2011.08.019.
[12] A. M. Hinz, D. Parisse, The average eccentricity of Sierpiński graphs, Graphs Combin., in press: doi: 10.1007/s00373-011-1076-4.
[13] W. Imrich, M. Kovše, Lattice embeddings of trees, European J. Combin. 30 (2009) 1142-1148.
[14] M. Jakovac, A 2-parametric generalization of Sierpiński gasket graphs, Ars Combin., to appear.
[15] S. Klavžar, U. Milutinović, Graphs S_{k}^{n} and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997) 95-104.
[16] S. Klavžar, U. Milutinović, C. Petr, 1-perfect codes in Sierpiński graphs, Bull. Austral. Math. Soc. 66 (2002) 369-384.
[17] S. Klavžar, B. Mohar, Crossing numbers of Sierpiński-like graphs, J. Graph Theory 50 (2005) 186-198.
[18] S. Klavžar, I. Peterin, Characterizing subgraphs of Hamming graphs, J. Graph Theory 49 (2005) 302-312.
[19] C.-H. Lin, J.-J. Liu, Y.-L. Wang, W. C.-K. Yen, The hub number of Sierpiński-like graphs, Theory Comput. Syst. 49 (2011) 588-600.
[20] S. Lipscomb, Fractals and Universal Spaces in Dimension Theory, Springer, Berlin, 2009.
[21] D. Parisse, On some metric properties of the Sierpiński graphs S_{k}^{n}, Ars Combin. 90 (2009) 145-160.
[22] I. Peterin, Characterizing flag graphs and induced subgraphs of Cartesian product graphs, Order 21 (2004) 283-292.
[23] T. Pisanski, T. W. Tucker, Growth in repeated truncations of maps, Atti Sem. Mat. Fis. Univ. Modena 49 (2001) 167-176.
[24] D. Romik, Shortest paths in the Tower of Hanoi graph and finite automata, SIAM J. Discrete Math. 20 (2006) 610-622.

[^0]: *This work has been financed by ARRS Slovenia under the grant P1-0297 and within the EUROCORES Programme EUROGIGA/GReGAS of the European Science Foundation. The author is also with the Institute of Mathematics, Physics and Mechanics, Ljubljana.

