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Abstract

The Wiener dimension of a connected graph is introduced as the number of
different distances of its vertices. For any integer d and any integer k, a graph
of diameter d and of Wiener dimension k is constructed. An infinite family of
non-vertex-transitive graphs with Wiener dimension 1 is also presented and it
is proved that a graph of dimension 1 is 2-connected.
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1 Introduction

The distance considered in this paper is the usual shortest path distance. We assume
throughout the paper that all graphs are connected unless stated otherwise. For
terms not defined here we refer to [13].

Let G be a graph and u ∈ V (G). Then the distance of u is

dG(u) =
∑

v∈V (G)

dG(u, v) .

∗This work has been financed by ARRS Slovenia under the grant P1-0297 and within the EU-
ROCORES Programme EUROGIGA/GReGAS of the European Science Foundation. The author
is also with the Institute of Mathematics, Physics and Mechanics, Ljubljana.

1



In location theory, sets of vertices with the minimum (or maximum) distance in a
graph play s special role because they form target sets for locations of facilities. The
set of vertices of a graph G that minimizes the distance is called the median set of
G. The framework can be made more general (at least) in two ways: by considering
the sum of distances to a specified multiset of vertices (such multisets are refereed
to as profiles) and by considering weighted graphs. For more information in this
direction of research see [1, 2, 9, 14].

The famous Wiener index of a graph G is defined as

W (G) =
1

2

∑

u∈V (G)

dG(u) .

Suppose now that {dG(u) | u ∈ V (G)} = {d1, d2, . . . , dk}. Assume in addition that
G contains ti vertices of distance di, 1 ≤ i ≤ k. Then the Wiener index of G can be
expressed as

W (G) =
1

2

k
∑

i=1

tidi . (1)

We therefore say that the Wiener dimension dimW(G) of G is k. That is, in this
paper we introduce the Wiener dimension of a graph as the number of different
distances of its vertices.

The paper is organized as follows. In the next section the Wiener dimension is
given for some classes of graphs. Then, in Section 3, we construct for any integer
d and any integer k a graph of diameter d and of Wiener dimension k. In the final
section we consider graphs of Wiener dimension 1. An infinite family of non-vertex-
transitive graphs with Wiener dimension 1 is constructed and it is proved that a
graph of dimension 1 is 2-connected.

2 Some examples

It is easy to see that dimW(Kn) = dimW(Cn) = dimW(P ) = 1, where P is the
Petersen graph, the intrinsic reason being that all these graphs are vertex-transitive,
cf. Section 4. It is also clear that dimW(Kn,m) = 2 as soon as n 6= m, and it is not
difficult to infer that dimW(Pn) = dn/2e for any n ≥ 1. For a sporadic example of
a graph G with dimW(G) = 4 see Fig. 1, where the graph G is shown together with
the distances of its vertices.

For a slightly more elaborate example consider the family of cyclic phenylenes,
a class of graphs arising in mathematical chemistry [3, 16]. These graphs are com-
posed of cyclically attached hexagons and squares, as shown in Fig. 2 for the cyclic
phenylene R5. The definition of Rk, k ≥ 3, should be clear from this example.

Let u, v, w be vertices of Rh, where u is a vertex of the inner long cycle, v a
vertex of degree 3 on the outer long cycle, and w a vertex of degree 2. Then it is
not difficult to see that for any k ≥ 3, dRk

(u) = 3k2 + 6k, dRk
(v) = 3k2 + 12k − 12,
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Figure 1: An asymmetric graph G with dimW(G) = 4

Figure 2: The cyclic phenylene R5

and dRk
(w) = 3k2 + 18k − 24. Since dRk

(u) < dRk
(v) < dRk

(w) holds for k ≥ 3, we
have dimW(Rk) = 3, k ≥ 3.

Using (1), we thus also get:

W (Rk) =
1

2
2k

(

(k2 + 6k) + (3k2 + 12k − 12) + (3k2 + 18k − 24)
)

= 9k3 + 36k2 − 36k .

3 Graphs with given diameter and Wiener dimension

The Inverse Wiener index problem is to find a graph from a certain class of graphs
with a given value of the Wiener index. The inverse Wiener index problem was
solved for general graphs by Goldman et al. [7]: for every positive integer n except
2 and 5 there exists a graph G such that the Wiener index of G is n. Lepovič
and Gutman [8] conjectured that all but 49 positive integers are Wiener indices of
trees. The conjecture was independently proved in [10] and [11]. For some recent
developments on the inverse Wiener problem see [12, 15].

In this section we start the Inverse Wiener dimension problem. As the first result
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in this direction we prove that for any integer d and any integer k there exists a
graph of diameter d and of Wiener dimension k. The corresponding construction
uses two main ingredients, graphs of diameter 2 and Cartesian products of graphs.
We begin with the following

Lemma 3.1 Let G be a graph of order n, diameter 2, and let v ∈ V (G). Then

dG(v) = 2n − deg(v) − 2. In particular, dimW(G) = |{deg(u) | u ∈ V (G)}|.

Proof. Since diam(G) = 2, we have dG(v) = deg(v) + 2(n − deg(v) − 1) = 2n −
deg(v) − 2. Therefore, dG(u) = dG(w) if and only if deg(u) = deg(w). �

Recall that the Cartesian product G� H of graphs G and H has vertex set
V (G� H) = V (G)×V (H) and (g, h) is adjacent to (g′, h′) if g = g′ and hh′ ∈ E(H),
or h = h′ and gg′ ∈ E(G). This graph operation is associative, hence we may
consider powers of graphs with respect to it. Powers of K2 are known as hypercubes,
the d-tuple power is denoted with Qd.

Let (g, h), (g′ , h′) ∈ V (G� H), then it well-known (cf. [6, Proposition 5.1]) that
dG �H((g, h), (g′ , h′)) = dG(g, g′)+dH (h, h′). Note that this fact in particular implies
that diam(G� H) = diam(G) + diam(H). Moreover,

dG�H((g, h)) =
∑

(g′,h′)∈V (G �H)

dG �H((g, h), (g′ , h′))

=
∑

(g′,h′)∈V (G �H)

(

dG(g, g′) + dH(h, h′)
)

= |V (H)|
∑

g′∈V (G)

dG(g, g′) + |V (G)|
∑

h′∈V (H)

dH(h, h′)

= |V (H)|dG(g) + |V (G)|dH (h) . (2)

Equation (2) has several consequences. First of all,

dimW(G� H) = |{|V (H)| dG(g) + |V (G)| dH(h) | g ∈ V (G), h ∈ V (H)}| .

Consequently,

max {dimW(G),dimW(H)} ≤ dimW(G�H) ≤ dimW(G)dimW(H) .

For our purposes, we apply Equation (2) as follows:

Corollary 3.2 Let G be a graph and let H be a graph with dimW(H) = 1. Then

dimW(G� H) = dimW(G).

Proof. Since dimW(H) = 1, there exists a constant s such that dH(h) = s for any
h ∈ V (H). Then by (2), dG�H((g, h)) = |V (H)|dG(g) + |V (G)|s for any vertex
(g, h) ∈ V (G� H). The conclusion is then clear. �

Now everything is ready for the main result of this section. Since the only graphs
of diameter one are complete graphs, their Wiener dimension is not interesting.
However, for diameter at least two we have:
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Theorem 3.3 For any d ≥ 2 and any k ≥ 1 there exists a graph G such that

diam(G) = d and dimW(G) = k.

Proof. For d ≥ 2 and k = 1 note that diam(C2d) = d and dimW(C2d) = 1. Hence
it remains to prove the theorem for any d ≥ 2 and any k ≥ 2.

Let Gk, k ≥ 2, be the graph defined as follows: V (Gk) = {1, 2, . . . , k + 1} and
ij ∈ E(Gk) whenever i + j ≤ k + 2. The vertex 1 of Gk is of degree k and since
Gk is not a complete graph we first get that diam(Gk) = 2. Moreover, the degree
sequence of Gk is k, k − 1, . . . , k/2 + 1, k/2, k/2, k/2 − 1, . . . , 2, 1 when k is even and
k, k − 1, . . . , (k + 1)/2 + 1, (k + 1)/2, (k + 1)/2, (k + 1)/2− 1, . . . , 2, 1 when k is odd.
In any case, Lemma 3.1 implies that for any k ≥ 2, dimW(Gk) = k.

So Gk, k ≥ 2, is a graph with diam(Gk) = 2 and dimW(Gk) = k. Let now d ≥ 3
and let H be an arbitrary vertex-transitive graph of diameter d−2. (Say, H = Qd−2.)
Then since diam(G� H) = diam(G) + diam(H), we have diam(Gk � H) = 2 + (d−
2) = d and by Corollary 3.2, dimW(Gk � H) = k. �

4 On graphs with Wiener dimension 1

In this section we consider graphs with Wiener dimension 1. Examples of such
graphs are all vertex-transitive graphs, but there are other examples as well. We
construct an infinite family of non-vertex-transitive graphs with Wiener dimension
1. We also show that a graph of dimension 1 is 2-connected.

Let u, v ∈ V (G) and α ∈ Aut(G) such that α(u) = v. Then, since α preserves
distances, we have

dG(u) =
∑

v∈V (G)

dG(u, v) =
∑

v∈V (G)

dG(α(u), α(v)) =
∑

v∈V (G)

dG(v, α(v)) = dG(v) .

This means that vertices of the same orbit of the automorphism group of a graph
G have the same distance; in particular, dimW(G) = 1 holds for vertex-transitive
graphs G. Using (1) again we thus have:

Corollary 4.1 ([17]) Let G be a vertex-transitive graph and u ∈ V (G). Then

W (G) = |V (G)|dG(u)/2.

Zhang and Li [17] extended this result by considering a subgroup of Aut(G) and
its orbits. The approach using Corollary 4.1 (and its edge-transitivity variation) was
recently applied in [5].

On the other hand, dG(u) = dG(v) does not necessarily imply that u and v are
in the same orbit of Aut(G) as we have already observed in Fig. 1. Note in addition
that the graph G from the figure is asymmetric.

Theorem 4.2 There exists a family of graph {Gk}k≥0 such that Gk is non-vertex-

transitive and dimW(Gk) = 1.
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Proof. Set G0 to be the Tutte 12-cage. It is well-known that it is not vertex-
transitive and we checked (using computer) that dimW(G0) = 1. Set now Gk =
G0 � Qk, k ≥ 1, where Qk is the k-dimensional cube. Since a Cartesian product has
transitive automorphism group if and only if every factor has transitive automor-
phism group, cf. [6, Theorem 6.17], we get that Gk, k ≥ 1, is not vertex-transitive.
On the other hand, since Qk is vertex-transitive, dimW(Qk) = 1 and hence by Corol-
lary 3.2, dimW(Gk) = 1. �

It is clear from the above proof that the same effect could also be obtained
by considering Cartesian powers of the Tutte 12-cage, that is, Gk

0 , k ≥ 1, are not
vertex-transitive but have Wiener dimension 1.

The Tutte 12-cage is an example of a semisymmetric graphs, where a graph G is
called semisymmetric if G is regular, edge-transitive but not vertex-transitive [4]. Of
course, 1 ≤ dimW(G) ≤ 2 holds for any semisymmetric graph G. We have checked
the Wiener dimension of the four smallest cubic semisymmetric graphs. Interest-
ingly, two of them, namely the Gray graph and the Ljubljana graph have Wiener
dimension 2, while the other two—the 110-Iofinova-Ivanov graph and the Tutte 12-
cage—have Wiener dimension 1. It seems an interesting problem to characterize
semisymmetric graphs with Wiener dimension 2.

We conclude with the following structural property of graphs of dimension 1:

Proposition 4.3 If dimW(G) = 1, then G is 2-connected.

Proof. Suppose on the contrary that x is a cut-vertex of G. Let G1 be an arbitrary
connected component of G − x and let G2 be the remaining graph of G − x. Let
|G1| = n1 and |G2| = n2, so that |G| = n1 + n2 + 1. Let y be a neighbor of x from
G1. Then

dG1
(x) ≤ dG1

(y) + n1 ,

dG2
(y) = dG2

(x) + n2 .

Summing up these inequalities we get

dG1
(x) + dG2

(x) + n2 ≤ dG1
(y) + dG2

(y) + n1 .

Since dG(x) = dG1
(x) + dG2

(x) and dG(y) = dG1
(y) + dG2

(y) + 1 if follows that

dG(x) + n2 ≤ (dG(y) − 1) + n1 .

Therefore, n2 < n1. On the other hand, selecting a neighbor of x in G2, an analogous
argument gives n1 < n2, a contradiction. �

Besides the cycles, we know of no graph of Wiener dimension 1 that is not
3-connected.
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