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1 Individual Project’s contribution to the CRP

1.1 Aims and Objectives

A geometric (q, k)-configuration is a collection of points and lines (or pseudolines) in the Eu-
clidean or projective plane so that each point lies on q lines and each line passes through k points;
if q = k, we merely refer to a k-configuration. Although 3-configurations have been studied since
the late 1800s [16], it is only in the past thirty years that there has been significant study of more
highly incident configurations, primarily of 4-configurations [10, 11, 12, 13, 14, 15, 17]. Many
of the results, including most known infinite classes of configurations, arise from configurations
with non-trivial geometric symmetries [8, 2, 4, 3, 6, 5, 7, 9].

Every configuration has a corresponding bipartite Levi graph, formed by associating a vertex
of the graph to each point and line of the configuration and connecting two vertices of the graph
with an edge precisely when the corresponding point and line are incident in the configuration.

In 2003, Boben and Pisanski [10] used voltage graphs to construct and analyze classes
of highly symmetric configurations, including one of the most well-understood classes of 4-
configurations, the celestial/h-astral 4-configurations.

However, little is known about more highly incident configurations—that is, (q, k)-configurations
where one of q and k is more than 4; in particular, only one infinite class of 5-configurations [9]
and one infinite class of 6-configurations are known [1].

The current project has two, related objectives. First, find new examples of symmetric k- and
(q, k)-configurations, by constructing and analyzing associated graphs, such as Levi graphs or
reduced Levi graphs/voltage graphs. For example, the known infinite class of 6-configurations
has the Desargues graph as its reduced Levi graph. Do other small cubic graphs with high
amounts of symmetry correspond to other classes of 6-configurations (possibly using pseudolines
rather than lines)?

Second, is it possible to construct new classes of graphs, or to analyze known classes of graphs,
by viewing them as Levi graphs or reduced Levi graphs of configurations? For example, the Levi
graph of the Desargues configuration (which corresponds to Desargues’ theorem from projective
geometry) is a cubic partial cube, of interest in computer science. Do other configurations
produce Levi graphs with interesting properties?

1.2 Methodologies

Potential avenues for investigation include:

• investigation of small examples, and construction of pseudoline examples

• construction of an algorithm to try to determine existence of configurations with a given
voltage graph

• consideration of oriented matroids

• construction of the voltage graphs corresponding to known classes of configurations (e.g.,
floral, 5-configurations, 6-configurations)

• development of computer programs to construct or analyze configurations and associated
graphs

2 Information on funding

Funding will be provided by the University of Alaska, USA.
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[13] Branko Grünbaum, Connected (n4) configurations exist for almost all n, Geombinatorics
10 (2000), no. 1, 24–29.

[14] Leah Wrenn Berman, Connected (n4) configurations exist for almost all n—an update,
Geombinatorics 12 (2002), no. 1, 15–23.

[15] Leah Wrenn Berman, Connected (n4) configurations exist for almost all n—second update,
Geombinatorics 16 (2006), no. 2, 254–261.

[16] Leah Wrenn Berman, Configurations of points and lines, Graduate Studies in Mathematics,
vol. 103, American Mathematical Society, Providence, RI, 2009.
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